Identification of novel small compounds that restore E-cadherin expression and inhibit tumor cell motility and invasiveness

Tumor dissemination and invasive behavior are associated with a majority of cancer-related mortality cases. Loss of E-cadherin, which is caused by several tumor-promoting factors, is associated with metastasis and poor prognosis in many neoplasms. In this study, we aimed to identify small molecule c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical pharmacology 2013-11, Vol.86 (10), p.1419-1429
Hauptverfasser: Hirano, Tamaki, Satow, Reiko, Kato, Asami, Tamura, Mana, Murayama, Yumi, Saya, Hideyuki, Kojima, Hirotatsu, Nagano, Tetsuo, Okabe, Takayoshi, Fukami, Kiyoko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tumor dissemination and invasive behavior are associated with a majority of cancer-related mortality cases. Loss of E-cadherin, which is caused by several tumor-promoting factors, is associated with metastasis and poor prognosis in many neoplasms. In this study, we aimed to identify small molecule compounds that restore the expression of E-cadherin, because these molecules are most likely to suppress tumor malignancy by restoring E-cadherin function and/or by inhibiting signals that suppress E-cadherin expression. Here, we developed a fluorescence screen system based on E-cadherin expression. A pilot drug library screen revealed that methotrexate (MTX) strongly induces E-cadherin expression in a colorectal cancer cell line, SW620. From the screen for 9600 compounds, we identified 9 hit compounds, which restored the expression of E-cadherin in SW620 and/or a melanoma cell line, SK-MEL-28. We confirmed that MTX and the other identified compounds transcriptionally promote E-cadherin expression. Among these, 2 compounds suppressed migration/invasion capacity in colorectal cancer cells and 3 in melanoma cells. A compound reduced SW620 migration and invasion with subtle effects on cell viability in SW620, SK-MEL-28, and a non-tumor cell line, HaCaT, with decrease in AKT and ERK1/2 protein levels. One of the other compounds reduced SK-MEL-28 cell migration and invasion and affected the viability only of SW620 and SK-MEL-28 cells but not HaCaT cells. These results suggest that these compounds would be attractive lead molecules as anti-metastasis agents.
ISSN:0006-2952
1873-2968
DOI:10.1016/j.bcp.2013.09.001