Operation of a horizontal subsurface flow constructed wetland – Microbial fuel cell treating wastewater under different organic loading rates
The aim of the present work is to determine whether a horizontal subsurface flow constructed wetland treating wastewater could act simultaneously as a microbial fuel cell (MFC). Specifically, and as the main variable under study, different organic loading rates were used, and the response of the sys...
Gespeichert in:
Veröffentlicht in: | Water research (Oxford) 2013-11, Vol.47 (17), p.6731-6738 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The aim of the present work is to determine whether a horizontal subsurface flow constructed wetland treating wastewater could act simultaneously as a microbial fuel cell (MFC). Specifically, and as the main variable under study, different organic loading rates were used, and the response of the system was monitored. The installation consisted of a synthetic domestic wastewater-feeding system and a pilot-scale constructed wetland for wastewater treatment, which also included coupled devices necessary to function as an MFC. The wetland worked under continuous operation for 180 d, treating three types of synthetic wastewater with increasing organic loading rates: 13.9 g COD m−2 d−1, 31.1 g COD m−2 d−1, and 61.1 g COD m−2 d−1. The COD removal efficiencies and the cell voltage generation were continuously monitored. The wetland worked simultaneously as an MFC generating electric power. Under low organic loading rates, the wastewater organic matter was completely oxidised in the lower anaerobic compartment, and there were slight aerobic conditions in the upper cathodic compartment, thus causing an electrical current. Under high organic loading rates, the organic matter could not be completely oxidised in the anodic compartment and flowed to the cathodic one, which entered into anaerobic conditions and caused the MFC to stop working. The system developed in this work offered similar cell voltage, power density, and current density values compared with the ones obtained in previous studies using photosynthetic MFCs, sediment-type MFCs, and plant-type MFCs. The light/darkness changes caused voltage fluctuations due to the photosynthetic activity of the macrophytes used (Phragmites australis), which affected the conditions in the cathodic compartment.
[Display omitted]
•A wastewater treatment constructed wetland worked as a microbial fuel cell.•Low organic loading rates allowed depurating and also obtaining electrical power.•High organic loadings caused anaerobic conditions and stopped electricity production.•The power generation was similar to several reported natural technologies. |
---|---|
ISSN: | 0043-1354 1879-2448 |
DOI: | 10.1016/j.watres.2013.09.005 |