Feasibility of Using Drinking Water Treatment Residuals as a Novel Chlorpyrifos Adsorbent

Recent efforts have increasingly focused on the development of low-cost adsorbents for pesticide retention. In this work, the novel reuse of drinking water treatment residuals (WTRs), a nonhazardous ubiquitous byproduct, as an adsorbent for chlorpyrifos was investigated. Results showed that the kine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural and food chemistry 2013-08, Vol.61 (31), p.7446-7452
Hauptverfasser: Zhao, Yuanyuan, Wang, Changhui, Wendling, Laura A, Pei, Yuansheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent efforts have increasingly focused on the development of low-cost adsorbents for pesticide retention. In this work, the novel reuse of drinking water treatment residuals (WTRs), a nonhazardous ubiquitous byproduct, as an adsorbent for chlorpyrifos was investigated. Results showed that the kinetics and isothermal processes of chlorpyrifos sorption to WTRs were better described by a pseudo-second-order model and by the Freundlich equation, respectively. Moreover, compared with paddy soil and other documented absorbents, the WTRs exhibited a greater affinity for chlorpyrifos (log K oc = 4.76–4.90) and a higher chlorpyrifos sorption capacity (K F = 5967 mg1–n ·L·kg–1) owing to the character and high content of organic matter. Further investigation demonstrated that the pH had a slight but statistically insignificant effect on chlorpyrifos sorption to WTRs; solution ionic strength and the presence of low molecular weight organic acids both resulted in concentration-dependent inhibition effects. Overall, these results confirmed the feasibility of using WTRs as a novel chlorpyrifos adsorbent.
ISSN:0021-8561
1520-5118
DOI:10.1021/jf401763f