Ellagic acid inhibits PDGF-BB-induced vascular smooth muscle cell proliferation and prevents atheroma formation in streptozotocin-induced diabetic rats

Plant-derived polyphenolic compounds have beneficial health effects. In the present study, we determined the ability of ellagic acid (EA) to prevent platelet-derived growth factor-BB (PDGF-BB)-induced proliferation of primary cultures of rat aortic smooth muscle cells (RASMCs). We also determined th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of nutritional biochemistry 2013-11, Vol.24 (11), p.1830-1839
Hauptverfasser: Rani P., Uma, Kesavan, Rushendhiran, Ganugula, Raghu, T., Avaneesh, Kumar P., Uday, Reddy, G. Bhanuprakash, Dixit, Madhulika
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Plant-derived polyphenolic compounds have beneficial health effects. In the present study, we determined the ability of ellagic acid (EA) to prevent platelet-derived growth factor-BB (PDGF-BB)-induced proliferation of primary cultures of rat aortic smooth muscle cells (RASMCs). We also determined the ability of EA to prevent atherosclerosis in streptozotocin-induced diabetic rats. Proliferation of cells was measured via Alamar Blue assay and through propidium iodide-based cell cycle analysis in flow cytometer. Reactive oxygen species (ROS) were measured via 2′,7′-dichlorofluorescin diacetate and Amplex red methods. Expression of proliferation markers and activation of kinases were assessed by immunoblot analysis. Cotreatment of primary cultures of RASMCs with 25 μmol/L of EA significantly reduced PDGF-BB (20 ng/ml)-induced proliferation by blocking S-phase entry. EA effectively blocked PDGF receptor-β (PDGFR-β) tyrosine phosphorylation, generation of intracellular ROS and downstream activation of extracellular signal-regulated kinase 1/2. It also blocked PDGF-BB-induced expression of cyclin D1. Computational molecular docking of EA with the PDGFR-β–PDGF-BB complex revealed two putative inhibitor binding sites which showed similar binding energies with the known PDGFR-β inhibitor AG1295. In diabetic rats, supplementation of diet with 2% EA significantly blocked diabetes-induced medial thickness, and lipid and collagen deposition in the arch of aorta. These were assessed through haematoxylin and eosin, Oil Red O and Masson’s trichome staining, respectively. EA treatment also blocked cyclin D1 expression in medial smooth muscle cells in experimental animals. Thus, EA is effective in reducing atherosclerotic process by blocking proliferation of vascular smooth muscle cells.
ISSN:0955-2863
1873-4847
DOI:10.1016/j.jnutbio.2013.04.004