Numerical simulation of Dean number and curvature effects on magneto-biofluid flow through a curved conduit

A numerical study is performed to investigate the magnetohydrodynamic viscous steady biofluid flow through a curved pipe with circular cross section under various conditions. A spectral method is applied as the principal tool for the numerical simulation with Fourier series, Chebyshev polynomials, c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine Journal of engineering in medicine, 2013-11, Vol.227 (11), p.1155-1170
Hauptverfasser: Hoque, Mohammad M, Alam, Mohammad M, Ferdows, Mohammad, Bég, Osman A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A numerical study is performed to investigate the magnetohydrodynamic viscous steady biofluid flow through a curved pipe with circular cross section under various conditions. A spectral method is applied as the principal tool for the numerical simulation with Fourier series, Chebyshev polynomials, collocation methods and an iteration method as secondary tools. The combined effects of Dean number, Dn, magnetic parameter, Mg, and tube curvature, δ, are studied. The flow patterns have been shown graphically for large Dean numbers as well as magnetic parameter and a wide range of curvatures, 0.01 ≤δ≤ 0.2. Two-vortex solutions have been found. Axial velocity has been found to increase with an increase of Dean number, whereas it is suppressed with greater curvature and magnetic parameters. For high magnetic parameter and Dean number and low curvature, almost all the fluid vortex strengths are weak. The study is relevant to magnetohydrodynamic blood flow in the cardiovascular system.
ISSN:0954-4119
2041-3033
DOI:10.1177/0954411913493844