Assessment of biological characteristics of adipose tissue-derived stem cells co-labeled with Molday ION Rhodamine B™ and green fluorescent protein in vitro

The current study aimed to investigate adipose tissue-derived stem cells (ADSCs) in vivo by multimodality imaging following implantation for cellular therapy. The biological characteristics of ADSCs co-labeled with Molday ION Rhodamine B™ (MIRB) and green fluorescent protein (GFP) were studied in vi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular medicine reports 2013-11, Vol.8 (5), p.1446-1452
Hauptverfasser: NAN, HUA, HUANG, JIACHENG, LI, HONGMIAN, LI, QIONG, LIU, DALIE
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The current study aimed to investigate adipose tissue-derived stem cells (ADSCs) in vivo by multimodality imaging following implantation for cellular therapy. The biological characteristics of ADSCs co-labeled with Molday ION Rhodamine B™ (MIRB) and green fluorescent protein (GFP) were studied in vitro. Following rat ADSC isolation and culture, a combined labeling strategy for ADSCs based on genetic modification of the reporter gene GFP with lentiviral vector expression enhancement and physical MIRB labeling was performed. Cell viability, proliferation, membrane-bound antigens and multiple differentiation ability were compared between the labeled and unlabeled ADSCs. The ADSCs were successfully labeled with GFP and MIRB, showing various fluorescent colors for marker identification. The fluorescence emitted by the GFP protein was sustained and exhibited stable expression, while MIRB fluorescence decreased with time. Compared with the unlabeled ADSCs, no significant differences were detected in cell viability, proliferation, membrane-bound antigens and multiple differentiation ability in the co-labeled samples (P>0.05). No significant effects on the biophysical properties of ADSCs were observed following co-labeling with lentiviral vectors encoding the gene for emerald green fluorescent protein and MIRB. The ADSCs were able to be efficiently tracked in vitro and in vivo by multimodality imaging thus, the co-labeling approach provides a novel strategy for therapeutic gene studies.
ISSN:1791-2997
1791-3004
DOI:10.3892/mmr.2013.1694