Contrast-enhanced imaging of SPIO-labeled platelets using magnetomotive ultrasound

The ability to image platelets in vivo can provide insight into blood clotting processes and coagulopathies, and aid in identifying sites of vascular endothelial damage related to trauma or cardiovascular disease. Toward this end, we have developed a magnetomotive ultrasound (MMUS) system that provi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics in medicine & biology 2013-10, Vol.58 (20), p.7277-7290
Hauptverfasser: Pope, Ava G, Wu, Gongting, McWhorter, Frances Y, Merricks, Elizabeth P, Nichols, Timothy C, Czernuszewicz, Tomasz J, Gallippi, Caterina M, Oldenburg, Amy L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The ability to image platelets in vivo can provide insight into blood clotting processes and coagulopathies, and aid in identifying sites of vascular endothelial damage related to trauma or cardiovascular disease. Toward this end, we have developed a magnetomotive ultrasound (MMUS) system that provides contrast-enhanced imaging of superparamagnetic iron oxide (SPIO) labeled platelets via magnetically-induced vibration. Platelets are a promising platform for functional imaging contrast because they readily take up SPIOs and are easily harvested from blood. Here we report a novel MMUS system that accommodates an arbitrarily thick sample while maintaining portability. We employed a frequency- and phase-locked motion detection algorithm based on bandpass filtering of the differential RF phase, which allows for the detection of sub-resolution vibration amplitudes on the order of several nanometers. We then demonstrated MMUS in homogenous tissue phantoms at SPIO concentrations as low as 0.09 mg ml−1 Fe (p < 0.0001, n = 6, t-test). Finally, we showed that our system is capable of three-dimensional imaging of a 185 µL simulated clot containing SPIO-platelets. This highlights the potential utility for non-invasive imaging of platelet-rich clots, which would constitute a fundamental advance in technology for the study of hemostasis and detection of clinically relevant thrombi.
ISSN:0031-9155
1361-6560
DOI:10.1088/0031-9155/58/20/7277