Increasing the Gravimetric Energy Density of Organic Based Secondary Battery Cathodes Using Small Radius Cations (Li+ and Mg2+)

One of the major challenges in electrochemical energy storage (EES) is increasing the gravimetric capacity and energy density of the cathode material. Here we demonstrate how to increase the gravimetric energy density of electrical energy storage devices based on the use of organic materials through...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JACS 2013-10, Vol.135 (39), p.14532-14535
Hauptverfasser: Hernández-Burgos, Kenneth, Rodríguez-Calero, Gabriel G, Zhou, Weidong, Burkhardt, Stephen E, Abruña, Héctor D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:One of the major challenges in electrochemical energy storage (EES) is increasing the gravimetric capacity and energy density of the cathode material. Here we demonstrate how to increase the gravimetric energy density of electrical energy storage devices based on the use of organic materials through exploitation of the strong ionic coupling between a reduced carbonyl functionality and small cations such as lithium (Li+) and magnesium (Mg2+). Binding of the cation to the reduced carbonyl results in a positive shift of the formal reduction potential of the carbonyl couple. This has the effect of increasing the cell voltage which, in turn, results in an increase in the energy density. We show how this interaction can be used to dramatically increase, by up to a factor of 2, the energy density for a selected case study using 1,2-di(thiophen-2-yl)ethane-1,2-dione (DTED). We have carried out electrochemical and computational studies in order to understand the thermodynamic (positive shift of 250 mV and 1 V in the formal potential for the first and second reductions, respectively, of the carbonyl groups of DTED) and kinetic effects between small radii cations (Li+ and Mg2+) and the reduced carbonyl functionality of carbonyl-based organic molecules (C-bOMs).
ISSN:0002-7863
1520-5126
DOI:10.1021/ja407273c