Metatranscriptomic analysis of lactic acid bacterial gene expression during kimchi fermentation
Barcode-based 16S rRNA gene pyrosequencing showed that the kimchi microbiome was dominated by six lactic acid bacteria (LAB), Leuconostoc (Lc.) mesenteroides, Lactobacillus (Lb.) sakei, Weissella (W.) koreensis, Lc. gelidum, Lc. carnosum, and Lc. gasicomitatum. Therefore, we used completed genome se...
Gespeichert in:
Veröffentlicht in: | International journal of food microbiology 2013-05, Vol.163 (2-3), p.171-179 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Barcode-based 16S rRNA gene pyrosequencing showed that the kimchi microbiome was dominated by six lactic acid bacteria (LAB), Leuconostoc (Lc.) mesenteroides, Lactobacillus (Lb.) sakei, Weissella (W.) koreensis, Lc. gelidum, Lc. carnosum, and Lc. gasicomitatum. Therefore, we used completed genome sequences of representatives of these bacteria to investigate metatranscriptomic gene-expression profiles during kimchi fermentation. Total mRNA was extracted from kimchi samples taken at five time points during a 29day-fermentation. Nearly all (97.7%) of the metagenome sequences that were recruited on all LAB genomes of GenBank mapped onto the six LAB strains; this high coverage rate indicated that this approach for assessing processes carried out by the kimchi microbiome was valid. Expressed mRNA sequences (as cDNA) were determined using Illumina GA IIx. Assignment of mRNA sequences to metabolic genes using MG-RAST revealed the prevalence of carbohydrate metabolism and lactic acid fermentation. The mRNA sequencing reads were mapped onto genomes of the six LAB strains, which showed that Lc. mesenteroides was most active during the early-stage fermentation, whereas gene expression by Lb. sakei and W. koreensis was high during later stages. However, gene expression by Lb. sakei decreased rapidly at 25days of fermentation, which was possibly caused by bacteriophage infection of the Lactobacillus species. Many genes related to carbohydrate transport and hydrolysis and lactate fermentation were actively expressed, which indicated typical heterolactic acid fermentation. Mannitol dehydrogenase-encoding genes (mdh) were identified from all Leuconostoc species and especially Lc. mesenteroides, which harbored three copies (two copies on chromosome and one copy on plasmid) of mdh with different expression patterns. These results contribute to knowledge of the active populations and gene expression in the LAB community responsible for an important fermentation process.
•Sequence-based metatranscriptomic analysis of kimchi microbiome was performed.•Expression of six LAB species was investigated during kimchi fermentation.•Expression of carbohydrate transport, hydrolysis, and metabolic genes was analyzed.•Expression of survival pH, vitamin, and biogenic amine synthesis genes was analyzed. |
---|---|
ISSN: | 0168-1605 1879-3460 |
DOI: | 10.1016/j.ijfoodmicro.2013.02.022 |