Exercise modifies [alpha]-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor expression in striatopallidal neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse
The [alpha]-amino-3-hydroxy-5-methyl-4-isoxazolepropionic-acid-type glutamate receptor (AMPAR) plays a critical role in modulating experience-dependent neuroplasticity, and alterations in AMPAR expression may underlie synaptic dysfunction and disease pathophysiology. Using the 1-methyl-4-phenyl-1,2,...
Gespeichert in:
Veröffentlicht in: | Journal of neuroscience research 2013-11, Vol.91 (11), p.1492-1507 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The [alpha]-amino-3-hydroxy-5-methyl-4-isoxazolepropionic-acid-type glutamate receptor (AMPAR) plays a critical role in modulating experience-dependent neuroplasticity, and alterations in AMPAR expression may underlie synaptic dysfunction and disease pathophysiology. Using the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of dopamine (DA) depletion, our previous work showed exercise increases total GluA2 subunit expression and the contribution of GluA2-containing channels in MPTP mice. The purpose of this study was to determine whether exercise-dependent changes in AMPAR expression after MPTP are specific to the striatopallidal (D2R) or striatonigral (D1R) medium spiny neuron (MSN) striatal projection pathways. Drd2-eGFP-BAC transgenic mice were used to delineate differences in AMPAR expression between striatal D2R-MSNs and D1R-MSNs. Striatal AMPAR expression was assessed by immunohistochemical (IHC) staining, Western immunoblotting (WB) of preparations enriched for postsynaptic density (PSD), and alterations in the current-voltage relationship of MSNs. We found DA depletion results in the emergence of GluA2-lacking AMPARs selectively in striatopallidal D2R-MSNs and that exercise reverses this effect in MPTP mice. Exercise-induced changes in AMPAR channels observed after DA depletion were associated with alterations in GluA1 and GluA2 subunit expression in postsynaptic protein, D2R-MSN cell surface expression, and restoration of corticostriatal plasticity. Mechanisms regulating experience-dependent changes in AMPAR expression may provide innovative therapeutic targets to increase the efficacy of treatments for basal ganglia disorders, including Parkinson's disease. © 2013 Wiley Periodicals, Inc. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0360-4012 1097-4547 |
DOI: | 10.1002/jnr.23260 |