Forecast Urban Air Pollution in Mexico City by Using Support Vector Machines: A Kernel Performance Approach
The development of forecasting models for pollution particles shows a nonlinear dynamic behavior; hence, implementation is a non-trivial process. In the literature, there have been multiple models of particulate pollutants, which use softcomputing techniques and machine learning such as: multilayer...
Gespeichert in:
Veröffentlicht in: | International journal of intelligence science 2013-07, Vol.3 (3), p.126-135 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 135 |
---|---|
container_issue | 3 |
container_start_page | 126 |
container_title | International journal of intelligence science |
container_volume | 3 |
creator | Sotomayor-Olmedo, Artemio Aceves-Fernández, Marco A. Gorrostieta-Hurtado, Efrén Pedraza-Ortega, Carlos Ramos-Arreguín, Juan M. Vargas-Soto, J. Emilio |
description | The development of forecasting models for pollution particles shows a nonlinear dynamic behavior; hence, implementation is a non-trivial process. In the literature, there have been multiple models of particulate pollutants, which use softcomputing techniques and machine learning such as: multilayer perceptrons, neural networks, support vector machines, kernel algorithms, and so on. This paper presents a prediction pollution model using support vector machines and kernel functions, which are: Gaussian, Polynomial and Spline. Finally, the prediction results of ozone (O sub(3)), particulate matter (PM10) and nitrogen dioxide (NO sub(2)) at Mexico City are presented as a case study using these techniques. |
doi_str_mv | 10.4236/ijis.2013.33014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1443371605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1443371605</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1604-4bbe40f257d42aff302c6be256ddf25e1384f2a776d215fc957cf4e920945c613</originalsourceid><addsrcrecordid>eNo1kE1Lw0AQhhdRsNSeve7RS9r9TBpvoVgVWyxovYbNZla3prtxNwH7702tzmWGl4d54UHompKpYDyd2Z2NU0Yon3JOqDhDI0ZTnhAu0_P_m835JZrEuCPDSJnNczJCn0sfQKvY4W2olMOFDXjjm6bvrHfYOryGb6s9XtjugKsD3kbr3vFL37Y-dPgNdOcDXiv9YR3EW1zgJwgOGryBYHzYK6cBF20b_IBcoQujmgiTvz1G2-Xd6-IhWT3fPy6KVaJpSkQiqgoEMUxmtWDKGE6YTitgMq3rIQXK58IwlWVpzag0OpeZNgJyRnIhdUr5GN2c_g61Xz3ErtzbqKFplAPfx5IKwXk2dMkBnZ1QHXyMAUzZBrtX4VBSUh7Nlkez5dFs-WuW_wAMn2wX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1443371605</pqid></control><display><type>article</type><title>Forecast Urban Air Pollution in Mexico City by Using Support Vector Machines: A Kernel Performance Approach</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Sotomayor-Olmedo, Artemio ; Aceves-Fernández, Marco A. ; Gorrostieta-Hurtado, Efrén ; Pedraza-Ortega, Carlos ; Ramos-Arreguín, Juan M. ; Vargas-Soto, J. Emilio</creator><creatorcontrib>Sotomayor-Olmedo, Artemio ; Aceves-Fernández, Marco A. ; Gorrostieta-Hurtado, Efrén ; Pedraza-Ortega, Carlos ; Ramos-Arreguín, Juan M. ; Vargas-Soto, J. Emilio</creatorcontrib><description>The development of forecasting models for pollution particles shows a nonlinear dynamic behavior; hence, implementation is a non-trivial process. In the literature, there have been multiple models of particulate pollutants, which use softcomputing techniques and machine learning such as: multilayer perceptrons, neural networks, support vector machines, kernel algorithms, and so on. This paper presents a prediction pollution model using support vector machines and kernel functions, which are: Gaussian, Polynomial and Spline. Finally, the prediction results of ozone (O sub(3)), particulate matter (PM10) and nitrogen dioxide (NO sub(2)) at Mexico City are presented as a case study using these techniques.</description><identifier>ISSN: 2163-0283</identifier><identifier>EISSN: 2163-0356</identifier><identifier>DOI: 10.4236/ijis.2013.33014</identifier><language>eng</language><ispartof>International journal of intelligence science, 2013-07, Vol.3 (3), p.126-135</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1604-4bbe40f257d42aff302c6be256ddf25e1384f2a776d215fc957cf4e920945c613</citedby><cites>FETCH-LOGICAL-c1604-4bbe40f257d42aff302c6be256ddf25e1384f2a776d215fc957cf4e920945c613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Sotomayor-Olmedo, Artemio</creatorcontrib><creatorcontrib>Aceves-Fernández, Marco A.</creatorcontrib><creatorcontrib>Gorrostieta-Hurtado, Efrén</creatorcontrib><creatorcontrib>Pedraza-Ortega, Carlos</creatorcontrib><creatorcontrib>Ramos-Arreguín, Juan M.</creatorcontrib><creatorcontrib>Vargas-Soto, J. Emilio</creatorcontrib><title>Forecast Urban Air Pollution in Mexico City by Using Support Vector Machines: A Kernel Performance Approach</title><title>International journal of intelligence science</title><description>The development of forecasting models for pollution particles shows a nonlinear dynamic behavior; hence, implementation is a non-trivial process. In the literature, there have been multiple models of particulate pollutants, which use softcomputing techniques and machine learning such as: multilayer perceptrons, neural networks, support vector machines, kernel algorithms, and so on. This paper presents a prediction pollution model using support vector machines and kernel functions, which are: Gaussian, Polynomial and Spline. Finally, the prediction results of ozone (O sub(3)), particulate matter (PM10) and nitrogen dioxide (NO sub(2)) at Mexico City are presented as a case study using these techniques.</description><issn>2163-0283</issn><issn>2163-0356</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo1kE1Lw0AQhhdRsNSeve7RS9r9TBpvoVgVWyxovYbNZla3prtxNwH7702tzmWGl4d54UHompKpYDyd2Z2NU0Yon3JOqDhDI0ZTnhAu0_P_m835JZrEuCPDSJnNczJCn0sfQKvY4W2olMOFDXjjm6bvrHfYOryGb6s9XtjugKsD3kbr3vFL37Y-dPgNdOcDXiv9YR3EW1zgJwgOGryBYHzYK6cBF20b_IBcoQujmgiTvz1G2-Xd6-IhWT3fPy6KVaJpSkQiqgoEMUxmtWDKGE6YTitgMq3rIQXK58IwlWVpzag0OpeZNgJyRnIhdUr5GN2c_g61Xz3ErtzbqKFplAPfx5IKwXk2dMkBnZ1QHXyMAUzZBrtX4VBSUh7Nlkez5dFs-WuW_wAMn2wX</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Sotomayor-Olmedo, Artemio</creator><creator>Aceves-Fernández, Marco A.</creator><creator>Gorrostieta-Hurtado, Efrén</creator><creator>Pedraza-Ortega, Carlos</creator><creator>Ramos-Arreguín, Juan M.</creator><creator>Vargas-Soto, J. Emilio</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7TV</scope><scope>C1K</scope></search><sort><creationdate>20130701</creationdate><title>Forecast Urban Air Pollution in Mexico City by Using Support Vector Machines: A Kernel Performance Approach</title><author>Sotomayor-Olmedo, Artemio ; Aceves-Fernández, Marco A. ; Gorrostieta-Hurtado, Efrén ; Pedraza-Ortega, Carlos ; Ramos-Arreguín, Juan M. ; Vargas-Soto, J. Emilio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1604-4bbe40f257d42aff302c6be256ddf25e1384f2a776d215fc957cf4e920945c613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Sotomayor-Olmedo, Artemio</creatorcontrib><creatorcontrib>Aceves-Fernández, Marco A.</creatorcontrib><creatorcontrib>Gorrostieta-Hurtado, Efrén</creatorcontrib><creatorcontrib>Pedraza-Ortega, Carlos</creatorcontrib><creatorcontrib>Ramos-Arreguín, Juan M.</creatorcontrib><creatorcontrib>Vargas-Soto, J. Emilio</creatorcontrib><collection>CrossRef</collection><collection>Pollution Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>International journal of intelligence science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sotomayor-Olmedo, Artemio</au><au>Aceves-Fernández, Marco A.</au><au>Gorrostieta-Hurtado, Efrén</au><au>Pedraza-Ortega, Carlos</au><au>Ramos-Arreguín, Juan M.</au><au>Vargas-Soto, J. Emilio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forecast Urban Air Pollution in Mexico City by Using Support Vector Machines: A Kernel Performance Approach</atitle><jtitle>International journal of intelligence science</jtitle><date>2013-07-01</date><risdate>2013</risdate><volume>3</volume><issue>3</issue><spage>126</spage><epage>135</epage><pages>126-135</pages><issn>2163-0283</issn><eissn>2163-0356</eissn><abstract>The development of forecasting models for pollution particles shows a nonlinear dynamic behavior; hence, implementation is a non-trivial process. In the literature, there have been multiple models of particulate pollutants, which use softcomputing techniques and machine learning such as: multilayer perceptrons, neural networks, support vector machines, kernel algorithms, and so on. This paper presents a prediction pollution model using support vector machines and kernel functions, which are: Gaussian, Polynomial and Spline. Finally, the prediction results of ozone (O sub(3)), particulate matter (PM10) and nitrogen dioxide (NO sub(2)) at Mexico City are presented as a case study using these techniques.</abstract><doi>10.4236/ijis.2013.33014</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2163-0283 |
ispartof | International journal of intelligence science, 2013-07, Vol.3 (3), p.126-135 |
issn | 2163-0283 2163-0356 |
language | eng |
recordid | cdi_proquest_miscellaneous_1443371605 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | Forecast Urban Air Pollution in Mexico City by Using Support Vector Machines: A Kernel Performance Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T14%3A53%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forecast%20Urban%20Air%20Pollution%20in%20Mexico%20City%20by%20Using%20Support%20Vector%20Machines:%20A%20Kernel%20Performance%20Approach&rft.jtitle=International%20journal%20of%20intelligence%20science&rft.au=Sotomayor-Olmedo,%20Artemio&rft.date=2013-07-01&rft.volume=3&rft.issue=3&rft.spage=126&rft.epage=135&rft.pages=126-135&rft.issn=2163-0283&rft.eissn=2163-0356&rft_id=info:doi/10.4236/ijis.2013.33014&rft_dat=%3Cproquest_cross%3E1443371605%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1443371605&rft_id=info:pmid/&rfr_iscdi=true |