Forecast Urban Air Pollution in Mexico City by Using Support Vector Machines: A Kernel Performance Approach

The development of forecasting models for pollution particles shows a nonlinear dynamic behavior; hence, implementation is a non-trivial process. In the literature, there have been multiple models of particulate pollutants, which use softcomputing techniques and machine learning such as: multilayer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of intelligence science 2013-07, Vol.3 (3), p.126-135
Hauptverfasser: Sotomayor-Olmedo, Artemio, Aceves-Fernández, Marco A., Gorrostieta-Hurtado, Efrén, Pedraza-Ortega, Carlos, Ramos-Arreguín, Juan M., Vargas-Soto, J. Emilio
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The development of forecasting models for pollution particles shows a nonlinear dynamic behavior; hence, implementation is a non-trivial process. In the literature, there have been multiple models of particulate pollutants, which use softcomputing techniques and machine learning such as: multilayer perceptrons, neural networks, support vector machines, kernel algorithms, and so on. This paper presents a prediction pollution model using support vector machines and kernel functions, which are: Gaussian, Polynomial and Spline. Finally, the prediction results of ozone (O sub(3)), particulate matter (PM10) and nitrogen dioxide (NO sub(2)) at Mexico City are presented as a case study using these techniques.
ISSN:2163-0283
2163-0356
DOI:10.4236/ijis.2013.33014