Contrasting Growth Patterns of Suspension-Feeding Molluscs (Mercenaria mercenaria, Crassostrea virginica, Argopecten irradians, and Crepidula fornicata) Across a Eutrophication Gradient in the Peconic Estuary, NY, USA

While many coastal ecosystems previously supported dense meadows of seagrass and dense stocks of bivalves, the impacts of overfishing, eutrophication, harmful algal blooms, and habitat loss have contributed to the decline of these important resources. Anthropogenic nutrient loading and subsequent eu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Estuaries and coasts 2013-11, Vol.36 (6), p.1274-1291
Hauptverfasser: Wall, Charles C., Gobler, Christopher J., Peterson, Bradley J., Ward, J. Evan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:While many coastal ecosystems previously supported dense meadows of seagrass and dense stocks of bivalves, the impacts of overfishing, eutrophication, harmful algal blooms, and habitat loss have contributed to the decline of these important resources. Anthropogenic nutrient loading and subsequent eutrophication has been identified by some researchers as a primary driver of these losses, but others have described potential positive effects of eutrophication on some estuarine resources. The Peconic Estuary, Long Island, NY, USA, offers a naturally occurring nutrient-loading gradient from eutrophic tidal creeks in its western reaches to mesotrophic bays in the eastern region. Over 2 years, we conducted an experiment across this gradient to examine the effects of eutrophication on the growth of estuarine species, including juvenile bivalves (northern quahogs (Mercenaria mercenaria), eastern oysters, (Crassostrea virginica), and bay scallops (Argopecten irradians)) and slipper limpet (Crepidula fornicata). Water quality and phytoplankton community biomass and composition were concurrently monitored at each site, and the effects of these variables on the growth of estuarine species were analyzed with multiple regression model. Eutrophication seemed to impact shellfish through changes in the quality of food and not the quantity since the growth rates of shellfish were more often correlated with densities of specific cell types or quality of seston rather than bulk measures of phytoplankton and organic seston. Northern quahogs and eastern oysters grew maximally within eutrophic locales, and their growth was positively correlated with high densities of autotrophic nanoflagellates and centric diatoms in these regions (p
ISSN:1559-2723
1559-2731
DOI:10.1007/s12237-013-9632-1