Sensitivity analysis of bridge pier scour depth predictive formulae

Sensitivity analysis is an approach to recognising the behaviour of models and relative importance of causative factors. In this paper, behaviours of six pier scour depth empirical formulae are evaluated on the basis of an analytical method. The sensitivity of predicted scour depth is analysed with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydroinformatics 2013-01, Vol.15 (3), p.939-951
Hauptverfasser: Gaudio, Roberto, Tafarojnoruz, Ali, De Bartolo, Samuele
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sensitivity analysis is an approach to recognising the behaviour of models and relative importance of causative factors. In this paper, behaviours of six pier scour depth empirical formulae are evaluated on the basis of an analytical method. The sensitivity of predicted scour depth is analysed with respect to the following independent parameters: approach flow depth, riverbed slope and median sediment size. Also their combined influence is studied examining the relative importance of each parameter with respect to the total variation of the maximum scour depth. Results show that: (1) sensitivity significantly depends on flow intensity for most of the selected formulae, whereas for the others it is a constant value or depends on other influencing parameters; (2) different formulae demonstrate various level of sensitivity to the input variables, so that, for a certain error in the input variables, the error in the results may vary consistently; (3) some formulae are very sensitive to the input parameters under some conditions, hence an error in an input variable may be amplified in the output results; and (4) most of the formulae are more sensitive to the variations of the influencing parameters in clear-water than in live-bed conditions.
ISSN:1464-7141
1465-1734
DOI:10.2166/hydro.2013.036