Transport properties of sulfonated poly (styrene-isobutylene-styrene) membranes with counter-ion substitution

In this study, the transport properties of poly(styrene‐isobutylene‐styrene) (SIBS) were determined as a function of sulfonation level (0–94.9%) and counter‐ion substitution (Ba+2, Ca+2, Mg+2, Mn+2, Cu+2, K+1) for fuel cell applications. Increasing the sulfonation level improved the ion exchange cap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2013-08, Vol.129 (4), p.2294-2304
Hauptverfasser: Avilés-Barreto, Sonia L., Suleiman, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, the transport properties of poly(styrene‐isobutylene‐styrene) (SIBS) were determined as a function of sulfonation level (0–94.9%) and counter‐ion substitution (Ba+2, Ca+2, Mg+2, Mn+2, Cu+2, K+1) for fuel cell applications. Increasing the sulfonation level improved the ion exchange capacity (IEC) of the membranes up a maximum (1.71 mequiv/g), suggesting a complex three‐dimensional network at high sulfonation levels. Results show that proton conductivity increases with IEC and is very sensitive to hydration levels. Methanol permeability, although also sensitive to IEC, shows a different behavior than proton conductivity, suggesting fundamental differences in their transport mechanism. The incorporation of counter‐ion substitution decreases both methanol and proton transport. Methanol permeability seems to be related to the size of the counter‐ion studied, while proton conductivity is more sensitive to water content, which is also reduced upon the incorporation of counter‐ions. To complement the studies, selectivity (i.e., proton conductivity/methanol permeability) of the studied membranes was determined and compared to Nafion® 117. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013
ISSN:0021-8995
1097-4628
DOI:10.1002/app.38952