Carbon Nanotube Fiber Based Stretchable Conductor
Carbon nanotube (CNT) based continuous fiber, a CNT assembly that could potentially retain the superb properties of individual CNTs on a macroscopic scale, belongs to a fascinating new class of electronic materials with potential applications in electronics, sensing, and conducting wires. Here, the...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2013-02, Vol.23 (7), p.789-793 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 793 |
---|---|
container_issue | 7 |
container_start_page | 789 |
container_title | Advanced functional materials |
container_volume | 23 |
creator | Zu, Mei Li, Qingwen Wang, Guojian Byun, Joon-Hyung Chou, Tsu-Wei |
description | Carbon nanotube (CNT) based continuous fiber, a CNT assembly that could potentially retain the superb properties of individual CNTs on a macroscopic scale, belongs to a fascinating new class of electronic materials with potential applications in electronics, sensing, and conducting wires. Here, the fabrication of CNT fiber based stretchable conductors by a simple prestraining‐then‐buckling approach is reported. To enhance the interfacial bonding between the fibers and the poly(dimethylsiloxane) (PDMS) substrate and thus facilitate the buckling formation, CNT fibers are first coated with a thin layer of liquid PDMS before being transferred to the prestrained substrate. The CNT fibers are deformed into massive buckles, resulting from the compressive force generated upon releasing the fiber/substrate assembly from prestrain. This buckling shape is quite different from the sinusoidal shape observed previously in otherwise analogous systems. Similar experiments performed on carbon fiber/PDMS composite film, on the other hand, result in extensive fiber fracture due to the higher fiber flexural modulus. Furthermore, the CNT fiber/PDMS composite film shows very little variation in resistance (≈1%) under multiple stretching‐and‐releasing cycles up to a prestrain level of 40%, indicating the outstanding stability and repeatability in performance as stretchable conductors.
Stretchable conductors based on buckled carbon nanotube (CNT) fibers are fabricated by a simple prestraining‐then‐buckling approach. The primary deformation mode of the CNT fibers is lateral kinking. This buckling shape is quite different from the sinusoidal shape observed previously in otherwise similar systems. The prepared CNT fiber/polydimethylsiloxane composite film shows excellent stability and repeatability in performance as a stretchable conductor. |
doi_str_mv | 10.1002/adfm.201202174 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1439771437</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1439771437</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3604-11c0d14ebc763ebe68c3c08f73cf28d1a886e7d677a7b614612e04564acd46a73</originalsourceid><addsrcrecordid>eNqFkLFOwzAQQC0EEqWwMmdkSfHFrp2OJZCCKGUIiG6WY19EIE2Knaj072kVVLGx3N3w3g2PkEugI6A0uta2WI0iChGNQPIjMgABImQ0io8PNyxPyZn3H5SClIwPCCTa5U0dLHTdtF2OQVrm6IIb7dEGWeuwNe86rzBImtp2pm3cOTkpdOXx4ncPyWt695Lch_Pn2UMynYeGCcpDAEMtcMyNFAxzFLFhhsaFZKaIYgs6jgVKK6TUMhfABURI-VhwbSwXWrIhuer_rl3z1aFv1ar0BqtK19h0XgFnEyl3c4-OetS4xnuHhVq7cqXdVgFV-zZq30Yd2uyESS9sygq3_9Bqeps-_XXD3i19i98HV7tPJSSTY_W2mKllmiXZYyYUZT9JsHX4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1439771437</pqid></control><display><type>article</type><title>Carbon Nanotube Fiber Based Stretchable Conductor</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zu, Mei ; Li, Qingwen ; Wang, Guojian ; Byun, Joon-Hyung ; Chou, Tsu-Wei</creator><creatorcontrib>Zu, Mei ; Li, Qingwen ; Wang, Guojian ; Byun, Joon-Hyung ; Chou, Tsu-Wei</creatorcontrib><description>Carbon nanotube (CNT) based continuous fiber, a CNT assembly that could potentially retain the superb properties of individual CNTs on a macroscopic scale, belongs to a fascinating new class of electronic materials with potential applications in electronics, sensing, and conducting wires. Here, the fabrication of CNT fiber based stretchable conductors by a simple prestraining‐then‐buckling approach is reported. To enhance the interfacial bonding between the fibers and the poly(dimethylsiloxane) (PDMS) substrate and thus facilitate the buckling formation, CNT fibers are first coated with a thin layer of liquid PDMS before being transferred to the prestrained substrate. The CNT fibers are deformed into massive buckles, resulting from the compressive force generated upon releasing the fiber/substrate assembly from prestrain. This buckling shape is quite different from the sinusoidal shape observed previously in otherwise analogous systems. Similar experiments performed on carbon fiber/PDMS composite film, on the other hand, result in extensive fiber fracture due to the higher fiber flexural modulus. Furthermore, the CNT fiber/PDMS composite film shows very little variation in resistance (≈1%) under multiple stretching‐and‐releasing cycles up to a prestrain level of 40%, indicating the outstanding stability and repeatability in performance as stretchable conductors.
Stretchable conductors based on buckled carbon nanotube (CNT) fibers are fabricated by a simple prestraining‐then‐buckling approach. The primary deformation mode of the CNT fibers is lateral kinking. This buckling shape is quite different from the sinusoidal shape observed previously in otherwise similar systems. The prepared CNT fiber/polydimethylsiloxane composite film shows excellent stability and repeatability in performance as a stretchable conductor.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201202174</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Assembly ; Buckling ; carbon nanotube fibers ; Carbon nanotubes ; Conductors (devices) ; Fibers ; flexible composites ; Repeatability ; Reproducibility ; Silicone resins ; stretchable conductors</subject><ispartof>Advanced functional materials, 2013-02, Vol.23 (7), p.789-793</ispartof><rights>Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3604-11c0d14ebc763ebe68c3c08f73cf28d1a886e7d677a7b614612e04564acd46a73</citedby><cites>FETCH-LOGICAL-c3604-11c0d14ebc763ebe68c3c08f73cf28d1a886e7d677a7b614612e04564acd46a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201202174$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201202174$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Zu, Mei</creatorcontrib><creatorcontrib>Li, Qingwen</creatorcontrib><creatorcontrib>Wang, Guojian</creatorcontrib><creatorcontrib>Byun, Joon-Hyung</creatorcontrib><creatorcontrib>Chou, Tsu-Wei</creatorcontrib><title>Carbon Nanotube Fiber Based Stretchable Conductor</title><title>Advanced functional materials</title><addtitle>Adv. Funct. Mater</addtitle><description>Carbon nanotube (CNT) based continuous fiber, a CNT assembly that could potentially retain the superb properties of individual CNTs on a macroscopic scale, belongs to a fascinating new class of electronic materials with potential applications in electronics, sensing, and conducting wires. Here, the fabrication of CNT fiber based stretchable conductors by a simple prestraining‐then‐buckling approach is reported. To enhance the interfacial bonding between the fibers and the poly(dimethylsiloxane) (PDMS) substrate and thus facilitate the buckling formation, CNT fibers are first coated with a thin layer of liquid PDMS before being transferred to the prestrained substrate. The CNT fibers are deformed into massive buckles, resulting from the compressive force generated upon releasing the fiber/substrate assembly from prestrain. This buckling shape is quite different from the sinusoidal shape observed previously in otherwise analogous systems. Similar experiments performed on carbon fiber/PDMS composite film, on the other hand, result in extensive fiber fracture due to the higher fiber flexural modulus. Furthermore, the CNT fiber/PDMS composite film shows very little variation in resistance (≈1%) under multiple stretching‐and‐releasing cycles up to a prestrain level of 40%, indicating the outstanding stability and repeatability in performance as stretchable conductors.
Stretchable conductors based on buckled carbon nanotube (CNT) fibers are fabricated by a simple prestraining‐then‐buckling approach. The primary deformation mode of the CNT fibers is lateral kinking. This buckling shape is quite different from the sinusoidal shape observed previously in otherwise similar systems. The prepared CNT fiber/polydimethylsiloxane composite film shows excellent stability and repeatability in performance as a stretchable conductor.</description><subject>Assembly</subject><subject>Buckling</subject><subject>carbon nanotube fibers</subject><subject>Carbon nanotubes</subject><subject>Conductors (devices)</subject><subject>Fibers</subject><subject>flexible composites</subject><subject>Repeatability</subject><subject>Reproducibility</subject><subject>Silicone resins</subject><subject>stretchable conductors</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkLFOwzAQQC0EEqWwMmdkSfHFrp2OJZCCKGUIiG6WY19EIE2Knaj072kVVLGx3N3w3g2PkEugI6A0uta2WI0iChGNQPIjMgABImQ0io8PNyxPyZn3H5SClIwPCCTa5U0dLHTdtF2OQVrm6IIb7dEGWeuwNe86rzBImtp2pm3cOTkpdOXx4ncPyWt695Lch_Pn2UMynYeGCcpDAEMtcMyNFAxzFLFhhsaFZKaIYgs6jgVKK6TUMhfABURI-VhwbSwXWrIhuer_rl3z1aFv1ar0BqtK19h0XgFnEyl3c4-OetS4xnuHhVq7cqXdVgFV-zZq30Yd2uyESS9sygq3_9Bqeps-_XXD3i19i98HV7tPJSSTY_W2mKllmiXZYyYUZT9JsHX4</recordid><startdate>20130218</startdate><enddate>20130218</enddate><creator>Zu, Mei</creator><creator>Li, Qingwen</creator><creator>Wang, Guojian</creator><creator>Byun, Joon-Hyung</creator><creator>Chou, Tsu-Wei</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130218</creationdate><title>Carbon Nanotube Fiber Based Stretchable Conductor</title><author>Zu, Mei ; Li, Qingwen ; Wang, Guojian ; Byun, Joon-Hyung ; Chou, Tsu-Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3604-11c0d14ebc763ebe68c3c08f73cf28d1a886e7d677a7b614612e04564acd46a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Assembly</topic><topic>Buckling</topic><topic>carbon nanotube fibers</topic><topic>Carbon nanotubes</topic><topic>Conductors (devices)</topic><topic>Fibers</topic><topic>flexible composites</topic><topic>Repeatability</topic><topic>Reproducibility</topic><topic>Silicone resins</topic><topic>stretchable conductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zu, Mei</creatorcontrib><creatorcontrib>Li, Qingwen</creatorcontrib><creatorcontrib>Wang, Guojian</creatorcontrib><creatorcontrib>Byun, Joon-Hyung</creatorcontrib><creatorcontrib>Chou, Tsu-Wei</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zu, Mei</au><au>Li, Qingwen</au><au>Wang, Guojian</au><au>Byun, Joon-Hyung</au><au>Chou, Tsu-Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon Nanotube Fiber Based Stretchable Conductor</atitle><jtitle>Advanced functional materials</jtitle><addtitle>Adv. Funct. Mater</addtitle><date>2013-02-18</date><risdate>2013</risdate><volume>23</volume><issue>7</issue><spage>789</spage><epage>793</epage><pages>789-793</pages><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Carbon nanotube (CNT) based continuous fiber, a CNT assembly that could potentially retain the superb properties of individual CNTs on a macroscopic scale, belongs to a fascinating new class of electronic materials with potential applications in electronics, sensing, and conducting wires. Here, the fabrication of CNT fiber based stretchable conductors by a simple prestraining‐then‐buckling approach is reported. To enhance the interfacial bonding between the fibers and the poly(dimethylsiloxane) (PDMS) substrate and thus facilitate the buckling formation, CNT fibers are first coated with a thin layer of liquid PDMS before being transferred to the prestrained substrate. The CNT fibers are deformed into massive buckles, resulting from the compressive force generated upon releasing the fiber/substrate assembly from prestrain. This buckling shape is quite different from the sinusoidal shape observed previously in otherwise analogous systems. Similar experiments performed on carbon fiber/PDMS composite film, on the other hand, result in extensive fiber fracture due to the higher fiber flexural modulus. Furthermore, the CNT fiber/PDMS composite film shows very little variation in resistance (≈1%) under multiple stretching‐and‐releasing cycles up to a prestrain level of 40%, indicating the outstanding stability and repeatability in performance as stretchable conductors.
Stretchable conductors based on buckled carbon nanotube (CNT) fibers are fabricated by a simple prestraining‐then‐buckling approach. The primary deformation mode of the CNT fibers is lateral kinking. This buckling shape is quite different from the sinusoidal shape observed previously in otherwise similar systems. The prepared CNT fiber/polydimethylsiloxane composite film shows excellent stability and repeatability in performance as a stretchable conductor.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/adfm.201202174</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2013-02, Vol.23 (7), p.789-793 |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_miscellaneous_1439771437 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Assembly Buckling carbon nanotube fibers Carbon nanotubes Conductors (devices) Fibers flexible composites Repeatability Reproducibility Silicone resins stretchable conductors |
title | Carbon Nanotube Fiber Based Stretchable Conductor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T17%3A47%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20Nanotube%20Fiber%20Based%20Stretchable%20Conductor&rft.jtitle=Advanced%20functional%20materials&rft.au=Zu,%20Mei&rft.date=2013-02-18&rft.volume=23&rft.issue=7&rft.spage=789&rft.epage=793&rft.pages=789-793&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201202174&rft_dat=%3Cproquest_cross%3E1439771437%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1439771437&rft_id=info:pmid/&rfr_iscdi=true |