Carbon Nanotube Fiber Based Stretchable Conductor

Carbon nanotube (CNT) based continuous fiber, a CNT assembly that could potentially retain the superb properties of individual CNTs on a macroscopic scale, belongs to a fascinating new class of electronic materials with potential applications in electronics, sensing, and conducting wires. Here, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2013-02, Vol.23 (7), p.789-793
Hauptverfasser: Zu, Mei, Li, Qingwen, Wang, Guojian, Byun, Joon-Hyung, Chou, Tsu-Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Carbon nanotube (CNT) based continuous fiber, a CNT assembly that could potentially retain the superb properties of individual CNTs on a macroscopic scale, belongs to a fascinating new class of electronic materials with potential applications in electronics, sensing, and conducting wires. Here, the fabrication of CNT fiber based stretchable conductors by a simple prestraining‐then‐buckling approach is reported. To enhance the interfacial bonding between the fibers and the poly(dimethylsiloxane) (PDMS) substrate and thus facilitate the buckling formation, CNT fibers are first coated with a thin layer of liquid PDMS before being transferred to the prestrained substrate. The CNT fibers are deformed into massive buckles, resulting from the compressive force generated upon releasing the fiber/substrate assembly from prestrain. This buckling shape is quite different from the sinusoidal shape observed previously in otherwise analogous systems. Similar experiments performed on carbon fiber/PDMS composite film, on the other hand, result in extensive fiber fracture due to the higher fiber flexural modulus. Furthermore, the CNT fiber/PDMS composite film shows very little variation in resistance (≈1%) under multiple stretching‐and‐releasing cycles up to a prestrain level of 40%, indicating the outstanding stability and repeatability in performance as stretchable conductors. Stretchable conductors based on buckled carbon nanotube (CNT) fibers are fabricated by a simple prestraining‐then‐buckling approach. The primary deformation mode of the CNT fibers is lateral kinking. This buckling shape is quite different from the sinusoidal shape observed previously in otherwise similar systems. The prepared CNT fiber/polydimethylsiloxane composite film shows excellent stability and repeatability in performance as a stretchable conductor.
ISSN:1616-301X
1616-3028
DOI:10.1002/adfm.201202174