SERS Mapping in Langmuir–Blodgett Films and Single-Molecule Detection

Plasmon-enhanced spectroscopic techniques have expanded single-molecule detection (SMD) and are revolutionizing areas such as bio-imaging and single-cell manipulation. Surface-enhanced (resonance) Raman scattering (SERS or SERRS) combines high sensitivity with molecular-fingerprint information at th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied spectroscopy 2013-05, Vol.67 (5), p.563-569
Hauptverfasser: Aoki, Pedro H.B., Carreon, Eduardo G.E., Volpati, Diogo, Shimabukuro, Milton H., Constantino, Carlos J.L., Aroca, Ricardo F., Oliveira, Osvaldo N., Paulovich, Fernando V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Plasmon-enhanced spectroscopic techniques have expanded single-molecule detection (SMD) and are revolutionizing areas such as bio-imaging and single-cell manipulation. Surface-enhanced (resonance) Raman scattering (SERS or SERRS) combines high sensitivity with molecular-fingerprint information at the single-molecule level. Spectra originating from single-molecule SERS experiments are rare events, which occur only if a single molecule is located in a hot-spot zone. In this spot, the molecule is selectively exposed to a significant enhancement associated with a high, local electromagnetic field in the plasmonic substrate. Here, we report an SMD study with an electrostatic approach in which a Langmuir film of a phospholipid with anionic polar head groups (PO4−) was doped with cationic methylene blue (MB), creating a homogeneous, two-dimensional distribution of dyes in the monolayer. The number of dyes in the probed area of the Langmuir-Blodgett (LB) film coating the Ag nanostructures established a regime in which single-molecule events were observed, with the identification based on direct matching of the observed spectrum at each point of the mapping with a reference spectrum for the MB molecule. In addition, advanced fitting techniques were tested with the data obtained from micro-Raman mapping, thus achieving real-time processing to extract the MB single-molecule spectra.
ISSN:0003-7028
1943-3530
DOI:10.1366/12-06909