Solid-state hydrolysis of postconsumer polyethylene terephthalate after plasma treatment

Plasma treatments were applied on the surface of postconsumer polyethylene terephthalate (PET) bottles to increase their wettability and hasten the subsequent hydrolysis process. Sixty‐four treatments were tested by varying plasma composition (oxygen and air), power (25–130 W), pressure (50–200 mTor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2013-02, Vol.127 (3), p.1989-1996
Hauptverfasser: Mancini, Sandro Donnini, Nogueira, Alex Rodrigues, Rangel, Elidiane Cipriano, da Cruz, Nilson Cristino
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Plasma treatments were applied on the surface of postconsumer polyethylene terephthalate (PET) bottles to increase their wettability and hasten the subsequent hydrolysis process. Sixty‐four treatments were tested by varying plasma composition (oxygen and air), power (25–130 W), pressure (50–200 mTorr), and time (1 and 5 min). The best treatment was the one applied in air plasma at 130 W and 50 mTorr for 5 min, as it provided the lowest contact angle, 9.4°. Samples of PET before and after the optimized plasma condition were subjected to hydrolysis at 205°C. Although the treatment changed only a thin surface layer, its influence was evident up to relatively high conversion rates, as the treated samples presented more than 40% higher conversion rates than the untreated ones after 2 h of reaction. Infrared spectroscopy showed that the terephthalic acid obtained from 99% of depolymerization was similar to the commercial product used in PET synthesis. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013
ISSN:0021-8995
1097-4628
DOI:10.1002/app.37591