Phase transitions for random walk asymptotics on free products of groups

Suppose we are given finitely generated groups Γ1,…,Γm equipped with irreducible random walks. Thereby we assume that the expansions of the corresponding Green functions at their radii of convergence contain only logarithmic or algebraic terms as singular terms up to sufficiently large order (except...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Random structures & algorithms 2012-03, Vol.40 (2), p.150-181
Hauptverfasser: Candellero, Elisabetta, Gilch, Lorenz A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Suppose we are given finitely generated groups Γ1,…,Γm equipped with irreducible random walks. Thereby we assume that the expansions of the corresponding Green functions at their radii of convergence contain only logarithmic or algebraic terms as singular terms up to sufficiently large order (except for some degenerate cases). We consider transient random walks on the free product Γ1* … *Γm and give a complete classification of the possible asymptotic behaviour of the corresponding n‐step return probabilities. They either inherit a law of the form ϱnδn −λ i log  κ in from one of the free factors Γi or obey a ϱnδn−3/2‐law, where ϱ < 1 is the corresponding spectral radius and δ is the period of the random walk. In addition, we determine the full range of the asymptotic behaviour in the case of nearest neighbour random walks on free products of the form \documentclass{article} \usepackage{amsmath, amsthm, amssymb, amsfonts}\pagestyle{empty}\begin{document} $\mathbb{Z}^{d_1}\ast \ldots \ast \mathbb{Z}^{d_m}$ \end{document}. Moreover, we characterize the possible phase transitions of the non‐exponential types n −λ i log  κ in in the case Γ1 * Γ2. © 2011 Wiley Periodicals, Inc. Random Struct. Alg., 2012
ISSN:1042-9832
1098-2418
DOI:10.1002/rsa.20370