Applications and Potential Toxicity of Magnetic Iron Oxide Nanoparticles
Owing to their unique physical and chemical properties, magnetic iron oxide nanoparticles have become a powerful platform in many diverse aspects of biomedicine, including magnetic resonance imaging, drug and gene delivery, biological sensing, and hyperthermia. However, the biomedical applications o...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2013-05, Vol.9 (9-10), p.1533-1545 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Owing to their unique physical and chemical properties, magnetic iron oxide nanoparticles have become a powerful platform in many diverse aspects of biomedicine, including magnetic resonance imaging, drug and gene delivery, biological sensing, and hyperthermia. However, the biomedical applications of magnetic iron oxide nanoparticles arouse serious concerns about their pharmacokinetics, metabolism, and toxicity. In this review, the updated research on the biomedical applications and potential toxicity of magnetic iron oxide nanoparticles is summarized. Much more effort is required to develop magnetic iron oxide nanoparticles with improved biocompatible surface engineering to achieve minimal toxicity, for various applications in biomedicine.
Magnetic iron oxide nanoparticles have become a powerful platform in many diverse aspects of biomedicine, including magnetic resonance imaging, drug and gene delivery, biological sensing, and hyperthermia. However, the biomedical applications of magnetic iron oxide nanoparticles arouse serious concerns about their pharmacokinetics, metabolism and toxicity. This review presents a broad overview of the biomedical applications and available toxicity assessments of magnetic iron oxide nanoparticles. |
---|---|
ISSN: | 1613-6810 1613-6829 |
DOI: | 10.1002/smll.201201531 |