Enhanced open-circuit voltage in organic photovoltaic cells with partially chlorinated zinc phthalocyanine

The open-circuit voltage ( V OC ) in organic photovoltaic cells has been shown to depend on a number of parameters including the energy levels of the active materials, active layer structure, illumination intensity, and operating temperature. Here we report, a significant increase in V OC from 0.43...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2013-10, Vol.48 (20), p.7104-7114
Hauptverfasser: Fleetham, Tyler B., Bakkan, Nathan, Mudrick, John P., Myers, Jason D., Cassidy, Vincent D., Cui, Jingbiao, Xue, Jiangeng, Li, Jian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The open-circuit voltage ( V OC ) in organic photovoltaic cells has been shown to depend on a number of parameters including the energy levels of the active materials, active layer structure, illumination intensity, and operating temperature. Here we report, a significant increase in V OC from 0.43 to 0.63 V in zinc phthalocyanine (ZnPc)/C 60 planar heterojunction photovoltaic cells operated at room temperature under 1 sun AM1.5G solar illumination, when a home-synthesized and purified ZnPc source materials was used instead of a commercially obtained (and home purified) ZnPc source. While the two ZnPc source materials have nearly identical UV–Vis and IR absorption properties, the home-synthesized ZnPc contains chlorinated derivatives and has half of the electrical defect density (on the order of 10 16 cm −3 ) as compared to the commercial ZnPc. The improved V OC in devices with the home-synthesized ZnPc is contributed from both a lower dark current and a higher magnitude of photocurrent. Additional experiments revealed that the different device characteristics are mostly associated with processes occurring at the ZnPc/C 60 interface, which we attribute to nongeminate recombination of charges built-up on either side of the interface.
ISSN:0022-2461
1573-4803
DOI:10.1007/s10853-013-7525-0