An investigation of Martian northern high-latitude and polar impact crater interiors: Atypical interior topographic features and cavity wall slopes
– We examine Martian northern high‐latitude and polar impact craters (NPICs) to better understand the north polar materials and polar processes. We examine topographic characteristics for 346 NPICs and compare them to global fit data (e.g., Garvin et al. 2003; Boyce and Garbeil 2007) as well as to a...
Gespeichert in:
Veröffentlicht in: | Meteoritics & planetary science 2012-06, Vol.47 (6), p.970-991 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | – We examine Martian northern high‐latitude and polar impact craters (NPICs) to better understand the north polar materials and polar processes. We examine topographic characteristics for 346 NPICs and compare them to global fit data (e.g., Garvin et al. 2003; Boyce and Garbeil 2007) as well as to a small set (N = 92) of southern high‐latitude and polar impact craters (SPICs). We find that the NPIC population above 57° N is significantly shallower than the global crater population. This suggests that the NPICs (1) were initially shallow due to target properties of polar geologic units; (2) were once deeper, but have been infilled due to polar processes; or (3) a combination of both. Indeed, many of the NPICs exhibit considerable noncentral peak interior topographic features (IFTs), which may be indicative of infilling processes. The NPIC IFTs also appear to display trends in their preferential orientation within the crater cavity; some SPICs display similar interior features, but do not show a clear preference in their orientation within the crater cavity. In addition, the NPIC population displays cavity wall slope trends that seem to indicate steepening of slopes with increasing crater diameter in comparison to the global slope trend (Garvin et al. 2003). These trends suggest that the NPICs are unique in their geometry when compared to the global data set as well as with the SPICs further indicating that the north polar region may exhibit target properties and polar processes not seen in the south polar region or elsewhere on Mars. |
---|---|
ISSN: | 1086-9379 1945-5100 |
DOI: | 10.1111/j.1945-5100.2012.01365.x |