Computational optimization strategies for the simulation of random media and components

In this paper efficient computational strategies are presented to speed-up the analysis of random media and components. In particular, a Hybrid Stochastic Optimization (HSO) tool, based on the synergy between various algorithms, i.e. Genetic Algorithms, Simulated Annealing as well as Tabu-list is su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational optimization and applications 2012-12, Vol.53 (3), p.903-931
Hauptverfasser: Patelli, Edoardo, Schuëller, Gerhart I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper efficient computational strategies are presented to speed-up the analysis of random media and components. In particular, a Hybrid Stochastic Optimization (HSO) tool, based on the synergy between various algorithms, i.e. Genetic Algorithms, Simulated Annealing as well as Tabu-list is suggested to reconstruct a set of microstructures starting from probabilistic descriptors. The subsequent analysis (e.g. Finite Element analysis) can be performed to obtain the desired macroscopic quantity of interest and, providing a link between the micro- and the macro-scale. Different computational speed-up strategies are also presented. The proposed simulation approach is highly parallelizable, flexible and scalable. It can be adopted by other fields as well where an optimization analysis is required and a set of different solutions should be identified in order to perform computational experiments. Numerical examples demonstrate the applicability of the proposed strategies for realistic problems.
ISSN:0926-6003
1573-2894
DOI:10.1007/s10589-012-9463-1