An Adaptive Evolutionary Algorithm for UWB Microstrip Antennas Optimization Using a Machine Learning Technique

ABSTRACT This article presents an application of a machine learning technique to enhance a multiobjective evolutionary algorithm to estimate fitness function behaviors from a set of experiments made in laboratory to analyze a microstrip antenna used in ultra wideband wireless devices. These function...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microwave and optical technology letters 2013-08, Vol.55 (8), p.1864-1868
Hauptverfasser: Silva, Cláudio R. M., Martins, Sinara R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT This article presents an application of a machine learning technique to enhance a multiobjective evolutionary algorithm to estimate fitness function behaviors from a set of experiments made in laboratory to analyze a microstrip antenna used in ultra wideband wireless devices. These function behaviors are related to three objectives: bandwidth, return loss, and central frequency deviation. Each objective is used inside an aggregate adaptive weighted fitness function that estimates the behavior in the algorithm. The machine learning technique enabled a dynamic estimation of an aggregated compound fitness function and made it possible to a prototype algorithm to learn and adapt with a set of experiments stored in a web system repository. The final results were then compared with the ones obtained with a similar antenna modeled in a simulator program and with the ones of a real prototype antenna built from the optimal values obtained after the optimization. © 2013 Wiley Periodicals, Inc. Microwave Opt Technol Lett 55:1864–1868, 2013
ISSN:0895-2477
1098-2760
DOI:10.1002/mop.27692