Fusion systems and group actions with abelian isotropy subgroups

We prove that if a finite group G acts smoothly on a manifold M such that all the isotropy subgroups are abelian groups with rank ≤ k, then G acts freely and smoothly on M × $\mathbb{S}^{n_1}\$ × … × $\mathbb{S}^{n_k}$ for some positive integers n1, …, nk. We construct these actions using a recursiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Edinburgh Mathematical Society 2013-10, Vol.56 (3), p.873-886
Hauptverfasser: Uenlue, Oezguen, Yalcin, Erguen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that if a finite group G acts smoothly on a manifold M such that all the isotropy subgroups are abelian groups with rank ≤ k, then G acts freely and smoothly on M × $\mathbb{S}^{n_1}\$ × … × $\mathbb{S}^{n_k}$ for some positive integers n1, …, nk. We construct these actions using a recursive method, introduced in an earlier paper, that involves abstract fusion systems on finite groups. As another application of this method, we prove that every finite solvable group acts freely and smoothly on some product of spheres, with trivial action on homology.
ISSN:0013-0915
1464-3839
DOI:10.1017/S0013091513000345