Tetravalent Manganese Feroxyhyte: A Novel Nanoadsorbent Equally Selective for As(III) and As(V) Removal from Drinking Water

The development of a single-phase Fe/Mn oxy-hydroxide (δ-Fe0.76Mn0.24OOH), highly efficient at adsorbing both As(III) and As(V), is reported. Its synthesis involves the coprecipitation of FeSO4 and KMnO4 in a kilogram-scale continuous process, in acidic and strongly oxidizing environments. The produ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2013-09, Vol.47 (17), p.9699-9705
Hauptverfasser: Tresintsi, Sofia, Simeonidis, Konstantinos, Estradé, Sonia, Martinez-Boubeta, Carlos, Vourlias, George, Pinakidou, Fani, Katsikini, Maria, Paloura, Eleni C, Stavropoulos, George, Mitrakas, Manassis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The development of a single-phase Fe/Mn oxy-hydroxide (δ-Fe0.76Mn0.24OOH), highly efficient at adsorbing both As(III) and As(V), is reported. Its synthesis involves the coprecipitation of FeSO4 and KMnO4 in a kilogram-scale continuous process, in acidic and strongly oxidizing environments. The produced material was identified as a manganese feroxyhyte in which tetravalent manganese is homogeneously distributed into the crystal unit, whereas a second-order hollow spherical morphology is favored. According to this structuration, the oxy-hydroxide maintains the high adsorption capacity for As(V) of a single Fe oxy-hydroxide combined with enhanced As(III) removal based on the oxidizing mediation of Mn(IV). Ion-exchange between arsenic species and sulfates as well as the strongly positive surface charge further facilitate arsenic adsorption. Batch adsorption tests performed in natural-like water indicate that Mn(IV)-feroxyhyte can remove 11.7 μg As(V)/mg and 6.7 μg As(III)/mg at equilibrium pH 7, before residual concentration overcomes the regulation limit of 10 μg As/L for drinking water. The improved efficiency of this material, its low cost, and the possibility for scaling-up its production to industry indicate the high practical impact and environmental importance of this novel adsorbent.
ISSN:0013-936X
1520-5851
DOI:10.1021/es4009932