Anthocyanins from black soybean inhibit Helicobacter pylori-induced inflammation in human gastric epithelial AGS cells

ABSTRACT Infection with Helicobacter pylori leads to gastritis, peptic ulcers and gastric cancer. Moreover, when the gastric mucosa is exposed to H. pylori, gastric mucosal inflammatory cytokine interleukin‐8 (Il‐8) and reactive oxygen species increase. Anthocyanins have anti‐oxidative, antibacteria...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microbiology and immunology 2013-05, Vol.57 (5), p.366-373
Hauptverfasser: Kim, Jung-Min, Kim, Kyung-Mi, Park, En-Hee, Seo, Ji-Hyun, Song, Jae-Young, Shin, Sung-Chul, Kang, Hyung-Lyun, Lee, Woo-Kon, Cho, Myung-Je, Rhee, Kwang-Ho, Youn, Hee-Shang, Baik, Seung-Chul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT Infection with Helicobacter pylori leads to gastritis, peptic ulcers and gastric cancer. Moreover, when the gastric mucosa is exposed to H. pylori, gastric mucosal inflammatory cytokine interleukin‐8 (Il‐8) and reactive oxygen species increase. Anthocyanins have anti‐oxidative, antibacterial and anti‐inflammatory properties. However, the effect of anthocyanins in H. pylori‐infected cells is not yet clear. In this study, therefore, the effect of anthocyanins on H. pylori‐infected human gastric epithelial cells was examined. AGS cells were pretreated with anthocyanins for 24 hrs followed by H. pylori 26695 infection for up to 24 hrs. Cell viability and ROS production were examined by 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide and 2′,7′–dichlorofluorescein diacetate assay, respectively. Western blot analyses and RT‐PCR were performed to assess gene and protein expression, respectively. IL‐8 secretion in AGS cells was measured by ELISA. It was found that anthocyanins decrease H. pylori‐induced ROS enhancement. Anthocyanins also inhibited phosphorylation of mitogen‐activated protein kinases, translocation of nuclear factor‐kappa B and Iκβα degradation. Furthermore anthocyanins inhibited H. pylori‐induced inducible nitric oxide synthases and cyclooxygenase‐2 mRNA expression and inhibited IL‐8 production by 45.8%. Based on the above findings, anthocyanins might have an anti‐inflammatory effect in H. pylori‐infected gastric epithelial cells.
ISSN:0385-5600
1348-0421
DOI:10.1111/1348-0421.12049