Bayesian Quantile Regression for Censored Data
In this paper we propose a semiparametric quantile regression model for censored survival data. Quantile regression permits covariates to affect survival differently at different stages in the follow-up period, thus providing a comprehensive study of the survival distribution. We take a semiparametr...
Gespeichert in:
Veröffentlicht in: | Biometrics 2013-09, Vol.69 (3), p.651-660 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we propose a semiparametric quantile regression model for censored survival data. Quantile regression permits covariates to affect survival differently at different stages in the follow-up period, thus providing a comprehensive study of the survival distribution. We take a semiparametric approach, representing the quantile process as a linear combination of basis functions. The basis functions are chosen so that the prior for the quantile process is centered on a simple location-scale model, but flexible enough to accommodate a wide range of quantile processes. We show in a simulation study that this approach is competitive with existing methods. The method is illustrated using data from a drug treatment study, where we find that the Bayesian model often gives smaller measures of uncertainty than its competitors, and thus identifies more significant effects. |
---|---|
ISSN: | 0006-341X 1541-0420 |
DOI: | 10.1111/biom.12053 |