Enhanced wound healing by topical administration of mesenchymal stem cells transfected with stromal cell-derived factor-1

Abstract The objective of this study was to investigate the ability of mesenchymal stem cells (MSC) genetically engineered with stromal cell-derived factor-1 (SDF-1) to heal skin wounds. When transfected with SDF-1 plasmid DNA, MSC which were isolated from the bone marrow of rats, secreted SDF-1 for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2013-12, Vol.34 (37), p.9393-9400
Hauptverfasser: Nakamura, Yoko, Ishikawa, Hidefumi, Kawai, Katsuya, Tabata, Yasuhiko, Suzuki, Shigehiko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract The objective of this study was to investigate the ability of mesenchymal stem cells (MSC) genetically engineered with stromal cell-derived factor-1 (SDF-1) to heal skin wounds. When transfected with SDF-1 plasmid DNA, MSC which were isolated from the bone marrow of rats, secreted SDF-1 for 7 days. In vitro cell migration assay revealed that the SDF-1-engineered MSC (SDF-MSC) enhanced the migration of MSC and dermal fibroblasts to a significantly greater extent than MSC. The SDF-MSC secreted vascular endothelial growth factor, hepatocyte growth factor, and interleukin 6 at a significantly high level. A skin defect model of rats was prepared and MSC and SDF-MSC were applied to the wound to evaluate wound healing in terms of wound size and histological examinations. The wound size decreased significantly faster with SDF-MSC treatment than with MSC and PBS treatments. The length of the neoepithelium and the number of blood vessels newly formed were significantly larger. A cell-tracing experiment with fluorescently labeled cells demonstrated that the percent survival of SDF-MSC in the tissue treated was significantly high compared with that of MSC. It was concluded that SDF-1 genetic engineering is a promising way to promote the wound healing activity of MSC for a skin defect.
ISSN:0142-9612
1878-5905
DOI:10.1016/j.biomaterials.2013.08.053