Finite element analysis of thermal and acoustic processes during laser tattoo removal

Background and Objective Q‐switched laser therapy is commonly used for the removal of tattoos. However, despite ever increasing demand for this intervention, a better understanding of the mechanisms that result in pigment reduction is required in order to optimise outcomes and reduce the number of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lasers in surgery and medicine 2013-02, Vol.45 (2), p.108-115
Hauptverfasser: Humphries, Alexander, Lister, Tom S., Wright, Philip A., Hughes, Mike P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background and Objective Q‐switched laser therapy is commonly used for the removal of tattoos. However, despite ever increasing demand for this intervention, a better understanding of the mechanisms that result in pigment reduction is required in order to optimise outcomes and reduce the number of treatment episodes. Study Design A finite element analysis computer simulation was developed to model the fragmentation response of ink granules during irradiation of a professional black tattoo using a Q‐switched Nd:YAG laser. Thermal and acoustic mechanisms were considered, allowing the optimal laser settings to be predicted throughout the course of treatment. Changes in the thermal properties of the ink during heating were taken into account to improve the reliability of the results obtained. Results The simulated results are in close agreement with clinical observations. Thermal fragmentation was shown to be the dominant mechanism in pigment reduction when using a 6 nanoseconds pulse at 1,064 nm. In order to provide maximum clearance whilst maintaining acceptable levels of tissue thermal damage, later treatments were shown to benefit from higher fluence levels than initial treatments. Larger spot diameters were also preferable throughout the course of treatment. Conclusions The results from the simulation build upon previous work carried out in the field, applying ink thermal coefficients which vary with temperature for the first time. These results compliment clinical knowledge, suggesting that a proactive increase in fluence during a course of treatments is likely to improve the response to laser therapy. Lasers Surg. Med. 45: 108–115, 2013. © 2012 Wiley Periodicals, Inc.
ISSN:0196-8092
1096-9101
DOI:10.1002/lsm.22107