Protein crystallization in stirred systems-scale-up via the maximum local energy dissipation

Macromolecular bioproducts like therapeutic proteins have usually been crystallized with µL‐scale vapor diffusion experiments for structure determination by X‐ray diffraction. Little systematic know‐how exists for technical‐scale protein crystallization in stirred vessels. In this study, the Fab‐fra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology and bioengineering 2013-07, Vol.110 (7), p.1956-1963
Hauptverfasser: Smejkal, Benjamin, Helk, Bernhard, Rondeau, Jean-Michel, Anton, Sabine, Wilke, Angelika, Scheyerer, Peter, Fries, Jacqueline, Hekmat, Dariusch, Weuster-Botz, Dirk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Macromolecular bioproducts like therapeutic proteins have usually been crystallized with µL‐scale vapor diffusion experiments for structure determination by X‐ray diffraction. Little systematic know‐how exists for technical‐scale protein crystallization in stirred vessels. In this study, the Fab‐fragment of the therapeutic antibody Canakinumab was successfully crystallized in a stirred‐tank reactor on a 6 mL‐scale. A four times faster onset of crystallization of the Fab‐fragment was observed compared to the non‐agitated 10 µL‐scale. Further studies on a liter‐scale with lysozyme confirmed this effect. A 10 times faster onset of crystallization was observed in this case at an optimum stirrer speed. Commonly suggested scale‐up criteria (i.e., minimum stirrer speed to keep the protein crystals in suspension or constant impeller tip speed) were shown not to be successful. Therefore, the criterion of constant maximum local energy dissipation was applied for scale‐up of the stirred crystallization process for the first time. The maximum local energy dissipation was estimated by measuring the drop size distribution of an oil/surfactant/water emulsion in stirred‐tank reactors on a 6 mL‐, 100 mL‐, and 1 L‐scale. A comparable crystallization behavior was achieved in all stirred‐tank reactors when the maximum local energy dissipation was kept constant for scale‐up. A maximum local energy dissipation of 2.2 W kg−1 was identified to be the optimum for lysozyme crystallization at all scales under study. Biotechnol. Bioeng. 2013; 110: 1956–1963. © 2013 Wiley Periodicals, Inc. Technical‐scale protein crystallization in stirred vessels can be a viable alternative to purification as well as polishing via preparative chromatography, particularly for therapeutic proteins. However, little systematic know‐how exists. In this study, scale‐up of protein crystallization was investigated using a Fab‐fragment of the therapeutic antibody Canakinumab and lysozyme. A faster onset of crystallization was observed at an optimum stirrer speed and a comparable crystallization behavior was achieved by applying a constant maximum local energy dissipation for scale‐up.
ISSN:0006-3592
1097-0290
DOI:10.1002/bit.24845