Full-scale Applications of Membrane Filtration in Municipal Wastewater Treatment Plants
The performance of one pilot‐scale and two full‐scale membrane bioreactors (MBR) were evaluated based on the control of main operational parameters, composition of microbial community and pathogens concentration in the treated outlet. Plants were designed for 0.75 m3/day (A), 60 m3/day (B) and 30 m3...
Gespeichert in:
Veröffentlicht in: | Clean : soil, air, water air, water, 2012-05, Vol.40 (5), p.479-486 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The performance of one pilot‐scale and two full‐scale membrane bioreactors (MBR) were evaluated based on the control of main operational parameters, composition of microbial community and pathogens concentration in the treated outlet. Plants were designed for 0.75 m3/day (A), 60 m3/day (B) and 30 m3/day (C). Inlet and outlet samples were monitored for chemical oxygen demand (COD), biological oxygen demand, total suspended solids, ammonia nitrogen concentration (NH4–N), nitrate nitrogen concentration, total Kjeldahl nitrogen, total phosphorus and phosphate phosphorus concentration concentrations. Plants showed good COD removal: 91.9% for Plant A, 97.8% for Plant B and 94.2% for Plant C. The targeted nitrogenous ion was NH4–N due to the requirements for outlet limits. NH4–N removal was moderate for Plant A (73.3%) and Plant B (86.1%) and excellent for Plant C (>99%). Excellent phosphorus removal was achieved by Plant A (average outlet concentration was 0.7 mg/L, efficiency 84.7%). Unsatisfactory results for phosphorus removal were achieved at the full‐scale plants due to operational problems. The dependency between the extracellular polymeric substances increase and decreasing mixed liquor volatile suspended solids for both lab and full‐scale plants was confirmed. Soluble microbial product concentrations were reduced by 65–68% after coagulant dosage for Plant A. Outlets from the MBR plants were monitored for the presence of pathogens (thermotolerant coliforms, Escherichia coli, intestinal Enterococci and culturable microorganisms at 22 and 37°C). The treated effluent from Plant A, B and C met Czech national legislation regarding reuse criteria (standards) for environment, irrigation and swimming purposes. Plants B and C were not able to achieve requirements for potable water and personal hygiene quality standards.
Membrane reactors are usually designed to achieve higher quality of final outlet but this study reveals that inconsistent feed, variable loads and insufficient plant management can lead to worsen quality of treated water. An increased level of automation and centralized data remote transfer can help to solve this problem. |
---|---|
ISSN: | 1863-0650 1863-0669 |
DOI: | 10.1002/clen.201000398 |