Aluminum bone toxicity in immature rats exposed to simulated high altitude

Aluminum (Al) is an element to which humans are widely exposed. Chronic administration induces a negative effect on bone tissue, affecting collagen synthesis and matrix mineralization. Its toxic effects are cumulative. Hypobaric hypoxia induces stress erythropoiesis, leading to hypertrophy of the er...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of bone and mineral metabolism 2011-09, Vol.29 (5), p.526-534
Hauptverfasser: del Pilar Martínez, María, Bozzini, Clarisa, Olivera, María Itatí, Dmytrenko, Ganna, Conti, María Inés
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aluminum (Al) is an element to which humans are widely exposed. Chronic administration induces a negative effect on bone tissue, affecting collagen synthesis and matrix mineralization. Its toxic effects are cumulative. Hypobaric hypoxia induces stress erythropoiesis, leading to hypertrophy of the erythropoietic marrow affecting the bone. This study was designed to evaluate the risk of Al bone toxicity among immature rats maintained at simulated high altitude (SHA) by mechanical assessment of stiffness and strength, calculation of some indicators of bone material and geometrical properties, as well as blood determinations. Forty growing rats were divided into control and experimental groups whether injected with vehicle or Al, as Al(OH) 3 , three times a week for 3 months. Half of each group was exposed to hypobaric conditions (HX) by placing the animals in a SHA chamber. Both treatments negatively affected structural properties of bones, decreasing the maximum capacity to withstand load, the limit elastic load and the capacity of absorbing energy in elastic conditions. Al administration significantly depressed mandible structural stiffness, although diaphyseal stiffness was not modified. Indicators of bone material intrinsic properties, elastic modulus and stress, were significantly reduced by Al or HX. Treatments increased the diaphyseal sectional bending moment of inertia, suggesting that femur, but not mandible, compensates for the decline in the material properties with an adaptation of its architecture to maintain structural properties. The different biomechanical behaviors between the two kinds of bone are probably due to their different embryological origin and specific functions, as mandible is a bone that adjusts its strength to biting forces, whereas femur is designed to support load.
ISSN:0914-8779
1435-5604
DOI:10.1007/s00774-010-0254-4