Perinatal glucocorticoids disrupt learning: A sexually dimorphic response

Glucocorticoid hormones administered during the perinatal period transiently inhibit postnatal granule cell neurogenesis, and thus interfere with normal hippocampal-dentate gyrus development. Chronic deficits on behavioral tests sensitive to hippocampal-dentate function result from such treatments....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physiology & behavior 1986, Vol.36 (1), p.145-149
Hauptverfasser: Vicedomini, John P., Nonneman, Arthur J., DeKosky, Steven T., Scheff, Stephen W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Glucocorticoid hormones administered during the perinatal period transiently inhibit postnatal granule cell neurogenesis, and thus interfere with normal hippocampal-dentate gyrus development. Chronic deficits on behavioral tests sensitive to hippocampal-dentate function result from such treatments. In the present study rats of both sexes received either a high dose (100 mg/kg) or low dose (1 mg/kg) of dexamethasone (a synthetic glucocorticoid) on postnatal day four. Control subjects received saline or nutritional deprivation intended to produce body and brain growth suppression comparable to that observed in low dose subjects. Behavioral tests sensitive to cerebellar (motor coordination) and hippocampal (place response acquisition and reversals) dysfunction were conducted in adulthood. Control and nutritional control subjects did not differ from each other on any behavioral measures. Motor coordination tests revealed no evidence of chronic dysfunction in dexamethasone treated or nutritionally deprived subjects. Spatial learning and reversal tests revealed a gender and dose-response effect for dexamethasone treatment. Low dose subjects were impaired relative to controls. High dose subjects exhibited significant learning impairments relative to low dose and saline or nutritional control subjects. Within the high dose group only, female subjects were more impaired than male subjects. These gender dependent effects may be related to enhanced glucocorticoid binding in the hippocampi of female versus male rats.
ISSN:0031-9384
1873-507X
DOI:10.1016/0031-9384(86)90088-0