Theoretical study of water adsorption and dissociation on Ta3N5(100) surfaces

Water adsorption and dissociation on the perfect, oxygen containing and nitrogen vacancy containing Ta3N5(100) surfaces are systematically studied by density functional theory calculations. The results show that the perfect Ta3N5(100) surface is very active for water dissociation because of the dang...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2013-01, Vol.15 (38), p.16054-16064
Hauptverfasser: Wang, Jiajia, Luo, Wenjun, Feng, Jianyong, Zhang, Li, Li, Zhaosheng, Zou, Zhigang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Water adsorption and dissociation on the perfect, oxygen containing and nitrogen vacancy containing Ta3N5(100) surfaces are systematically studied by density functional theory calculations. The results show that the perfect Ta3N5(100) surface is very active for water dissociation because of the dangling bonds formed on the perfect Ta3N5(100) surface. The presence of oxygen on the surface is able to stabilize the Ta3N5(100) surface but not to facilitate water dissociation, which may be ascribed to the saturation of surface dangling bonds by oxygen. The presence of a nitrogen vacancy on the surface is able to facilitate water dissociation, but Ta3N5(100) surfaces with nitrogen vacancies are not stable. We found that keeping the impurity oxygen as less as possible is one effective approach to enhance the water splitting ability of Ta3N5. We propose that doping with foreign elements is one potential method to obtain a clean Ta3N5(100) surface, since the oxygen concentration may be adjusted by competition between oxygen and foreign elements.
ISSN:1463-9076
1463-9084
DOI:10.1039/c3cp51613j