Poly(ethylene oxide)-co-Poly(propylene oxide)-Based Gel Electrolyte with High Ionic Conductivity and Mechanical Integrity for Lithium-Ion Batteries

Using gel polymer electrolytes (GPEs) for lithium-ion batteries usually encounters the drawback of poor mechanical integrity of the GPEs. This study demonstrates the outstanding performance of a GPE consisting of a commercial membrane (Celgard) incorporated with a poly(ethylene oxide)-co-poly(propyl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2013-09, Vol.5 (17), p.8477-8485
Hauptverfasser: Wang, Shih-Hong, Hou, Sheng-Shu, Kuo, Ping-Lin, Teng, Hsisheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using gel polymer electrolytes (GPEs) for lithium-ion batteries usually encounters the drawback of poor mechanical integrity of the GPEs. This study demonstrates the outstanding performance of a GPE consisting of a commercial membrane (Celgard) incorporated with a poly(ethylene oxide)-co-poly(propylene oxide) copolymer (P(EO-co-PO)) swelled by a liquid electrolyte (LE) of 1 M LiPF6 in carbonate solvents. The proposed GPE stably holds LE with an amount that is three times that of the Celgard-P(EO-co-PO) composite. This GPE has a higher ionic conductivity (2.8 × 10–3 and 5.1 × 10–4 S cm–1 at 30 and −20 °C, respectively) and a wider electrochemical voltage range (5.1 V) than the LE-swelled Celgard because of the strong ion-solvation power of P(EO-co-PO). The active ion-solvation role of P(EO-co-PO) also suppresses the formation of the solid–electrolyte interphase layer. When assembling the GPE in a Li/LiFePO4 battery, the P(EO-co-PO) network hinders anionic transport, producing a high Li+ transference number of 0.5 and decreased the polarization overpotential. The Li/GPE/LiFePO4 battery delivers a discharge capacity of 156–135 mAh g–1 between 0.1 and 1 C-rates, which is approximately 5% higher than that of the Li/LE/LiFePO4 battery. The IR drop of the Li/GPE/LiFePO4 battery was 44% smaller than that of the Li/LE/LiFePO4. The Li/GPE/LiFePO4 battery is more stable, with only a 1.2% capacity decay for 150 galvanostatic charge–discharge cycles. The advantages of the proposed GPE are its high stability, conductivity, Li+ transference number, and mechanical integrity, which allow for the assembly of GPE-based batteries readily scalable to industrial levels.
ISSN:1944-8244
1944-8252
DOI:10.1021/am4019115