Effect of Emotional Stress on Biogenic Amine Content in the Sensorimotor Cortex of Rats with Experimental Intracerebral Hemorrhage

Experiments on the model of an aggressive-conflict situation were designed to study the effect of emotional stress on biogenic amine content in the sensorimotor cortex of the right cerebral hemisphere in behaviorally active and passive rats with experimental hemorrhage in the left caudate nucleus of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of experimental biology and medicine 2013-02, Vol.154 (4), p.421-424
Hauptverfasser: Pertsov, S. S., Ivannikova, N. O., Krylin, V. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Experiments on the model of an aggressive-conflict situation were designed to study the effect of emotional stress on biogenic amine content in the sensorimotor cortex of the right cerebral hemisphere in behaviorally active and passive rats with experimental hemorrhage in the left caudate nucleus of the brain. Prior exposure to stress in active and, particularly, in passive animals was shown to modify the type of neurochemical reactions in brain tissue during modeling of intracerebral hemorrhage. As differentiated from rats with experimental hemorrhagic stroke, passive specimens of this series were characterized by a slight increase in norepinephrine content and significant elevation of dopamine level in the sensorimotor cortex on day 3 of the study. An increase in dopamine content in brain tissue of stressed active rats was observed on days 1 and 3, which corresponded to the immediate and acute stages of the post-stroke period. Variations in serotonin content in the sensorimotor cortex of animals with post-stress intracerebral hemorrhage had the same dynamics, but were less pronounced than in non-stressed rats. Our results illustrate the specific involvement of brain biogenic amines in animals with various behavioral characteristics in the adaptive and compensatory processes, which occur during various stages of experimental intracerebral hemorrhage after stress exposure.
ISSN:0007-4888
1573-8221
DOI:10.1007/s10517-013-1966-y