Laser Ablation Molecular Isotopic Spectrometry: Parameter influence on boron isotope measurements
Laser Ablation Molecular Isotopic Spectrometry (LAMIS) was recently reported for optical isotopic analysis of condensed samples in ambient air and at ambient pressure. LAMIS utilizes molecular emissions which exhibit larger isotopic spectral shits than in atomic transitions. For boron monoxide 10BO...
Gespeichert in:
Veröffentlicht in: | Spectrochimica acta. Part B: Atomic spectroscopy 2011-08, Vol.66 (8), p.604-609 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Laser Ablation Molecular Isotopic Spectrometry (LAMIS) was recently reported for optical isotopic analysis of condensed samples in ambient air and at ambient pressure. LAMIS utilizes molecular emissions which exhibit larger isotopic spectral shits than in atomic transitions. For boron monoxide
10BO and
11BO, the isotopic shifts extend from 114
cm
−1 (0.74
nm) to 145–238
cm
−1 (5–8
nm) at the
B
2Σ
+ (
v
=
0)
→
X
2Σ
+ (
v
=
2) and
A
2Π
i (
v
=
0)
→
X
2Σ
+ (
v
=
3) transitions, respectively. These molecular isotopic shifts are over two orders of magnitude larger than the maximum isotopic shift of approximately 0.6
cm
−1 in atomic boron. This paper describes how boron isotope abundance can be quantitatively determined using LAMIS and how atomic, ionic, and molecular optical emission develops in a plasma emanating from laser ablation of solid samples with various boron isotopic composition. We demonstrate that requirements for spectral resolution of the measurement system can be significantly relaxed when the isotopic abundance ratio is determined using chemometric analysis of spectra. Sensitivity can be improved by using a second slightly delayed laser pulse arriving into an expanding plume created by the first ablation pulse. |
---|---|
ISSN: | 0584-8547 1873-3565 |
DOI: | 10.1016/j.sab.2011.06.007 |