Statistical mechanics of multiplex networks: entropy and overlap
There is growing interest in multiplex networks where individual nodes take part in several layers of networks simultaneously. This is the case, for example, in social networks where each individual node has different kinds of social ties or transportation systems where each location is connected to...
Gespeichert in:
Veröffentlicht in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2013-06, Vol.87 (6), p.062806-062806, Article 062806 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | There is growing interest in multiplex networks where individual nodes take part in several layers of networks simultaneously. This is the case, for example, in social networks where each individual node has different kinds of social ties or transportation systems where each location is connected to another location by different types of transport. Many of these multiplexes are characterized by a significant overlap of the links in different layers. In this paper we introduce a statistical mechanics framework to describe multiplex ensembles. A multiplex is a system formed by N nodes and M layers of interactions where each node belongs to the M layers at the same time. Each layer α is formed by a network G^{α}. Here we introduce the concept of correlated multiplex ensembles in which the existence of a link in one layer is correlated with the existence of a link in another layer. This implies that a typical multiplex of the ensemble can have a significant overlap of the links in the different layers. Moreover, we characterize microcanonical and canonical multiplex ensembles satisfying respectively hard and soft constraints and we discuss how to construct multiplexes in these ensembles. Finally, we provide the expression for the entropy of these ensembles that can be useful to address different inference problems involving multiplexes. |
---|---|
ISSN: | 1539-3755 1550-2376 |
DOI: | 10.1103/physreve.87.062806 |