Using Compound-Specific Isotope Analysis to Assess Biodegradation of Nitroaromatic Explosives in the Subsurface

Assessing the fate of nitroaromatic explosives in the subsurface is challenging because contaminants are present in different phases (e.g., bound to soil or sediment matrix or as solid-phase residues) and transformation takes place via several potentially competing pathways over time-scales of decad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2013-07, Vol.47 (13), p.6872-6883
Hauptverfasser: Wijker, Reto S, Bolotin, Jakov, Nishino, Shirley F, Spain, Jim C, Hofstetter, Thomas B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Assessing the fate of nitroaromatic explosives in the subsurface is challenging because contaminants are present in different phases (e.g., bound to soil or sediment matrix or as solid-phase residues) and transformation takes place via several potentially competing pathways over time-scales of decades. We developed a procedure for compound-specific analysis of stable C, N, and H isotopes in nitroaromatic compounds (NACs) and characterized biodegradation of 2,4,6-trinitrotoluene (TNT) and two dinitrotoluene isomers (2,4-DNT and 2,6-DNT) in subsurface material of a contaminated site. The type and relative contribution of reductive and oxidative pathways to the degradation of the three contaminants was inferred from the combined evaluation of C, N, and H isotope fractionation. Indicative trends of Δδ15N vs Δδ13C and Δδ2H vs Δδ13C were obtained from laboratory model systems for biodegradation pathways initiated via (i) dioxygenation, (ii) reduction, and (iii) CH3-group oxidation. The combined evaluation of NAC isotope fractionation in subsurface materials and in laboratory experiments suggests that in the field, 86–89% of 2,4-DNT transformation was due to dioxygenation while TNT was mostly reduced and 2,6-DNT reacted via a combination of reduction and CH3-group oxidation. Based on historic information on site operation, our data imply biodegradation of 2,4-DNT with half-lives of up to 9–17 years compared to 18–34 years for cometabolic transformation of TNT and 2,6-DNT.
ISSN:0013-936X
1520-5851
DOI:10.1021/es3051845