An Intronic miRNA Regulates Expression of the Human Endothelial Nitric Oxide Synthase Gene and Proliferation of Endothelial Cells by a Mechanism Related to the Transcription Factor SP-1. e70658
Objective This study was to investigate the molecular mechanisms underlying the 27nt-miRNA-mediated regulation of expression of the endothelial nitric oxide synthase (eNOS) gene. Methods Cell lines overexpressing 27nt-miRNA or its mutant were established by transfecting the miRNA expression vector i...
Gespeichert in:
Veröffentlicht in: | PloS one 2013-08, Vol.8 (8) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Objective This study was to investigate the molecular mechanisms underlying the 27nt-miRNA-mediated regulation of expression of the endothelial nitric oxide synthase (eNOS) gene. Methods Cell lines overexpressing 27nt-miRNA or its mutant were established by transfecting the miRNA expression vector into the endothelial cells. eNOS mRNA and protein expression were examined by RT-PCR and Western Blotting, respectively. Luciferase activity reporter system was used to study the target of 27nt-miRNA. Results The results showed that overexpression of 27nt-miRNA significantly inhibited eNOS mRNA level and protein expression, and reduced the eNOS transcriptional efficiency. Such inhibitory effects of 27nt-miRNA were attenuated by the sequence mutations in 27nt-miRNA. Interestingly, the transcription factor SP-1 expression was reduced by 27nt-miRNA. Meanwhile, overxpression of SP-1 protein partially restored eNOS expression, and rescued the 27nt-miRNA-mediated reduction of endothelial cell proliferation. Moreover, certain sites in the SP-1 mRNA were found to be the direct target of 27nt-miRNA by a luciferase reporter system. Conclusions These results demonstrate that the 27nt-miRNA suppresses eNOS gene expression and SP-1 expression in vascular endothelial cells. The 27nt-miRNA directly target to SP-1 mRNA, thereby contributing to proliferation of endothelial cells. |
---|---|
ISSN: | 1932-6203 |
DOI: | 10.1371/journal.pone.0070658 |