Laser-induced forward transfer of intact chalcogenide thin films: resultant morphology and thermoelectric properties
We present a laser-based transfer method for the novel application of fabricating elements for planar thermoelectric devices. Thin films of thermoelectric chalcogenides (Bi 2 Te 3 , Bi 2 Se 3 and Bi 0.5 Sb 1.5 Te 3 ) were printed via laser-induced forward transfer (LIFT) onto polymer-coated substrat...
Gespeichert in:
Veröffentlicht in: | Applied physics. A, Materials science & processing Materials science & processing, 2013-09, Vol.112 (4), p.1073-1079 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1079 |
---|---|
container_issue | 4 |
container_start_page | 1073 |
container_title | Applied physics. A, Materials science & processing |
container_volume | 112 |
creator | Feinaeugle, M. Sones, C. L. Koukharenko, E. Gholipour, B. Hewak, D. W. Eason, R. W. |
description | We present a laser-based transfer method for the novel application of fabricating elements for planar thermoelectric devices. Thin films of thermoelectric chalcogenides (Bi
2
Te
3
, Bi
2
Se
3
and Bi
0.5
Sb
1.5
Te
3
) were printed via laser-induced forward transfer (LIFT) onto polymer-coated substrates over large areas of up to ∼15 mm
2
in size. A morphological study showed that it was possible to partially preserve the polycrystalline structure of the transferred films. The films’ Seebeck coefficients after LIFT transfer were measured and resulted in −49±1 μV/K, −93±8 μV/K and 142±3 μV/K for Bi
2
Te
3
, Bi
2
Se
3
and Bi
0.5
Sb
1.5
Te
3
, respectively, which were found to be ∼23±6 % lower compared to their initial values. This demonstration shows that LIFT is suitable to transfer sensitive, functional semiconductor materials over areas up to ∼15 mm
2
with minimal damage onto a non-standard polymer-coated substrate. |
doi_str_mv | 10.1007/s00339-012-7491-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1429910890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1429910890</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-9c6c08415558eff7bd51415a3aaeea91265cd5a5bbec8c059646928c13b8650b3</originalsourceid><addsrcrecordid>eNp9kD9rHDEQxUVIIBfHH8CdmkAaJfq7u3JnjB0bDtIktdBqR3cyWukiaQn-9pY5kzLTDMO894b5IXTF6DdG6fi9UiqEJpRxMkrNiHyHdkwKTugg6Hu0o1qOZBJ6-Ig-1fpEe0nOd6jtbYVCQlo2Bwv2ufy1ZcGt2FQ9FJw9DqlZ17A72ujyAVJYALdjSNiHuNZrXKBusdnU8JrL6ZhjPjxjm3rIEcqaIYJrJTh8KvkEpQWon9EHb2OFy7d-gX7f3_26fSD7nz8eb2_2xAktG9FucHSSTCk1gffjvCjWJyusBbCa8UG5RVk1z-AmR5Ue5KD55JiYp0HRWVygr-fcfvrPBrWZNVQHMdoEeauGSa41o5OmXcrOUldyrQW8OZWw2vJsGDWvhM2ZsOmEzSthI7vny1u8rc5G35m5UP8Z-ThIKdXUdfysq32VDlDMU95K6p__J_wFWoWN3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1429910890</pqid></control><display><type>article</type><title>Laser-induced forward transfer of intact chalcogenide thin films: resultant morphology and thermoelectric properties</title><source>Springer Nature - Complete Springer Journals</source><creator>Feinaeugle, M. ; Sones, C. L. ; Koukharenko, E. ; Gholipour, B. ; Hewak, D. W. ; Eason, R. W.</creator><creatorcontrib>Feinaeugle, M. ; Sones, C. L. ; Koukharenko, E. ; Gholipour, B. ; Hewak, D. W. ; Eason, R. W.</creatorcontrib><description>We present a laser-based transfer method for the novel application of fabricating elements for planar thermoelectric devices. Thin films of thermoelectric chalcogenides (Bi
2
Te
3
, Bi
2
Se
3
and Bi
0.5
Sb
1.5
Te
3
) were printed via laser-induced forward transfer (LIFT) onto polymer-coated substrates over large areas of up to ∼15 mm
2
in size. A morphological study showed that it was possible to partially preserve the polycrystalline structure of the transferred films. The films’ Seebeck coefficients after LIFT transfer were measured and resulted in −49±1 μV/K, −93±8 μV/K and 142±3 μV/K for Bi
2
Te
3
, Bi
2
Se
3
and Bi
0.5
Sb
1.5
Te
3
, respectively, which were found to be ∼23±6 % lower compared to their initial values. This demonstration shows that LIFT is suitable to transfer sensitive, functional semiconductor materials over areas up to ∼15 mm
2
with minimal damage onto a non-standard polymer-coated substrate.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-012-7491-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Chalcogenides ; Characterization and Evaluation of Materials ; Condensed Matter Physics ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Electronic conduction in metals and alloys ; Electronic transport in condensed matter ; Exact sciences and technology ; Lasers ; Lift ; Machines ; Manufacturing ; Nanotechnology ; Optical and Electronic Materials ; Physics ; Physics and Astronomy ; Preserves ; Processes ; Resultants ; Semiconductor materials ; Surfaces and Interfaces ; Thermoelectric and thermomagnetic effects ; Thermoelectricity ; Thin Films</subject><ispartof>Applied physics. A, Materials science & processing, 2013-09, Vol.112 (4), p.1073-1079</ispartof><rights>Springer-Verlag Berlin Heidelberg 2012</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-9c6c08415558eff7bd51415a3aaeea91265cd5a5bbec8c059646928c13b8650b3</citedby><cites>FETCH-LOGICAL-c394t-9c6c08415558eff7bd51415a3aaeea91265cd5a5bbec8c059646928c13b8650b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-012-7491-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-012-7491-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27644458$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Feinaeugle, M.</creatorcontrib><creatorcontrib>Sones, C. L.</creatorcontrib><creatorcontrib>Koukharenko, E.</creatorcontrib><creatorcontrib>Gholipour, B.</creatorcontrib><creatorcontrib>Hewak, D. W.</creatorcontrib><creatorcontrib>Eason, R. W.</creatorcontrib><title>Laser-induced forward transfer of intact chalcogenide thin films: resultant morphology and thermoelectric properties</title><title>Applied physics. A, Materials science & processing</title><addtitle>Appl. Phys. A</addtitle><description>We present a laser-based transfer method for the novel application of fabricating elements for planar thermoelectric devices. Thin films of thermoelectric chalcogenides (Bi
2
Te
3
, Bi
2
Se
3
and Bi
0.5
Sb
1.5
Te
3
) were printed via laser-induced forward transfer (LIFT) onto polymer-coated substrates over large areas of up to ∼15 mm
2
in size. A morphological study showed that it was possible to partially preserve the polycrystalline structure of the transferred films. The films’ Seebeck coefficients after LIFT transfer were measured and resulted in −49±1 μV/K, −93±8 μV/K and 142±3 μV/K for Bi
2
Te
3
, Bi
2
Se
3
and Bi
0.5
Sb
1.5
Te
3
, respectively, which were found to be ∼23±6 % lower compared to their initial values. This demonstration shows that LIFT is suitable to transfer sensitive, functional semiconductor materials over areas up to ∼15 mm
2
with minimal damage onto a non-standard polymer-coated substrate.</description><subject>Chalcogenides</subject><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Electronic conduction in metals and alloys</subject><subject>Electronic transport in condensed matter</subject><subject>Exact sciences and technology</subject><subject>Lasers</subject><subject>Lift</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Preserves</subject><subject>Processes</subject><subject>Resultants</subject><subject>Semiconductor materials</subject><subject>Surfaces and Interfaces</subject><subject>Thermoelectric and thermomagnetic effects</subject><subject>Thermoelectricity</subject><subject>Thin Films</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kD9rHDEQxUVIIBfHH8CdmkAaJfq7u3JnjB0bDtIktdBqR3cyWukiaQn-9pY5kzLTDMO894b5IXTF6DdG6fi9UiqEJpRxMkrNiHyHdkwKTugg6Hu0o1qOZBJ6-Ig-1fpEe0nOd6jtbYVCQlo2Bwv2ufy1ZcGt2FQ9FJw9DqlZ17A72ujyAVJYALdjSNiHuNZrXKBusdnU8JrL6ZhjPjxjm3rIEcqaIYJrJTh8KvkEpQWon9EHb2OFy7d-gX7f3_26fSD7nz8eb2_2xAktG9FucHSSTCk1gffjvCjWJyusBbCa8UG5RVk1z-AmR5Ue5KD55JiYp0HRWVygr-fcfvrPBrWZNVQHMdoEeauGSa41o5OmXcrOUldyrQW8OZWw2vJsGDWvhM2ZsOmEzSthI7vny1u8rc5G35m5UP8Z-ThIKdXUdfysq32VDlDMU95K6p__J_wFWoWN3A</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Feinaeugle, M.</creator><creator>Sones, C. L.</creator><creator>Koukharenko, E.</creator><creator>Gholipour, B.</creator><creator>Hewak, D. W.</creator><creator>Eason, R. W.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130901</creationdate><title>Laser-induced forward transfer of intact chalcogenide thin films: resultant morphology and thermoelectric properties</title><author>Feinaeugle, M. ; Sones, C. L. ; Koukharenko, E. ; Gholipour, B. ; Hewak, D. W. ; Eason, R. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-9c6c08415558eff7bd51415a3aaeea91265cd5a5bbec8c059646928c13b8650b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Chalcogenides</topic><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Electronic conduction in metals and alloys</topic><topic>Electronic transport in condensed matter</topic><topic>Exact sciences and technology</topic><topic>Lasers</topic><topic>Lift</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Preserves</topic><topic>Processes</topic><topic>Resultants</topic><topic>Semiconductor materials</topic><topic>Surfaces and Interfaces</topic><topic>Thermoelectric and thermomagnetic effects</topic><topic>Thermoelectricity</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feinaeugle, M.</creatorcontrib><creatorcontrib>Sones, C. L.</creatorcontrib><creatorcontrib>Koukharenko, E.</creatorcontrib><creatorcontrib>Gholipour, B.</creatorcontrib><creatorcontrib>Hewak, D. W.</creatorcontrib><creatorcontrib>Eason, R. W.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics. A, Materials science & processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feinaeugle, M.</au><au>Sones, C. L.</au><au>Koukharenko, E.</au><au>Gholipour, B.</au><au>Hewak, D. W.</au><au>Eason, R. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Laser-induced forward transfer of intact chalcogenide thin films: resultant morphology and thermoelectric properties</atitle><jtitle>Applied physics. A, Materials science & processing</jtitle><stitle>Appl. Phys. A</stitle><date>2013-09-01</date><risdate>2013</risdate><volume>112</volume><issue>4</issue><spage>1073</spage><epage>1079</epage><pages>1073-1079</pages><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>We present a laser-based transfer method for the novel application of fabricating elements for planar thermoelectric devices. Thin films of thermoelectric chalcogenides (Bi
2
Te
3
, Bi
2
Se
3
and Bi
0.5
Sb
1.5
Te
3
) were printed via laser-induced forward transfer (LIFT) onto polymer-coated substrates over large areas of up to ∼15 mm
2
in size. A morphological study showed that it was possible to partially preserve the polycrystalline structure of the transferred films. The films’ Seebeck coefficients after LIFT transfer were measured and resulted in −49±1 μV/K, −93±8 μV/K and 142±3 μV/K for Bi
2
Te
3
, Bi
2
Se
3
and Bi
0.5
Sb
1.5
Te
3
, respectively, which were found to be ∼23±6 % lower compared to their initial values. This demonstration shows that LIFT is suitable to transfer sensitive, functional semiconductor materials over areas up to ∼15 mm
2
with minimal damage onto a non-standard polymer-coated substrate.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-012-7491-4</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-8396 |
ispartof | Applied physics. A, Materials science & processing, 2013-09, Vol.112 (4), p.1073-1079 |
issn | 0947-8396 1432-0630 |
language | eng |
recordid | cdi_proquest_miscellaneous_1429910890 |
source | Springer Nature - Complete Springer Journals |
subjects | Chalcogenides Characterization and Evaluation of Materials Condensed Matter Physics Condensed matter: electronic structure, electrical, magnetic, and optical properties Electronic conduction in metals and alloys Electronic transport in condensed matter Exact sciences and technology Lasers Lift Machines Manufacturing Nanotechnology Optical and Electronic Materials Physics Physics and Astronomy Preserves Processes Resultants Semiconductor materials Surfaces and Interfaces Thermoelectric and thermomagnetic effects Thermoelectricity Thin Films |
title | Laser-induced forward transfer of intact chalcogenide thin films: resultant morphology and thermoelectric properties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T17%3A17%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Laser-induced%20forward%20transfer%20of%20intact%20chalcogenide%20thin%20films:%20resultant%20morphology%20and%20thermoelectric%20properties&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Feinaeugle,%20M.&rft.date=2013-09-01&rft.volume=112&rft.issue=4&rft.spage=1073&rft.epage=1079&rft.pages=1073-1079&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-012-7491-4&rft_dat=%3Cproquest_cross%3E1429910890%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1429910890&rft_id=info:pmid/&rfr_iscdi=true |