Laser-induced forward transfer of intact chalcogenide thin films: resultant morphology and thermoelectric properties

We present a laser-based transfer method for the novel application of fabricating elements for planar thermoelectric devices. Thin films of thermoelectric chalcogenides (Bi 2 Te 3 , Bi 2 Se 3 and Bi 0.5 Sb 1.5 Te 3 ) were printed via laser-induced forward transfer (LIFT) onto polymer-coated substrat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics. A, Materials science & processing Materials science & processing, 2013-09, Vol.112 (4), p.1073-1079
Hauptverfasser: Feinaeugle, M., Sones, C. L., Koukharenko, E., Gholipour, B., Hewak, D. W., Eason, R. W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1079
container_issue 4
container_start_page 1073
container_title Applied physics. A, Materials science & processing
container_volume 112
creator Feinaeugle, M.
Sones, C. L.
Koukharenko, E.
Gholipour, B.
Hewak, D. W.
Eason, R. W.
description We present a laser-based transfer method for the novel application of fabricating elements for planar thermoelectric devices. Thin films of thermoelectric chalcogenides (Bi 2 Te 3 , Bi 2 Se 3 and Bi 0.5 Sb 1.5 Te 3 ) were printed via laser-induced forward transfer (LIFT) onto polymer-coated substrates over large areas of up to ∼15 mm 2 in size. A morphological study showed that it was possible to partially preserve the polycrystalline structure of the transferred films. The films’ Seebeck coefficients after LIFT transfer were measured and resulted in −49±1 μV/K, −93±8 μV/K and 142±3 μV/K for Bi 2 Te 3 , Bi 2 Se 3 and Bi 0.5 Sb 1.5 Te 3 , respectively, which were found to be ∼23±6 % lower compared to their initial values. This demonstration shows that LIFT is suitable to transfer sensitive, functional semiconductor materials over areas up to ∼15 mm 2 with minimal damage onto a non-standard polymer-coated substrate.
doi_str_mv 10.1007/s00339-012-7491-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1429910890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1429910890</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-9c6c08415558eff7bd51415a3aaeea91265cd5a5bbec8c059646928c13b8650b3</originalsourceid><addsrcrecordid>eNp9kD9rHDEQxUVIIBfHH8CdmkAaJfq7u3JnjB0bDtIktdBqR3cyWukiaQn-9pY5kzLTDMO894b5IXTF6DdG6fi9UiqEJpRxMkrNiHyHdkwKTugg6Hu0o1qOZBJ6-Ig-1fpEe0nOd6jtbYVCQlo2Bwv2ufy1ZcGt2FQ9FJw9DqlZ17A72ujyAVJYALdjSNiHuNZrXKBusdnU8JrL6ZhjPjxjm3rIEcqaIYJrJTh8KvkEpQWon9EHb2OFy7d-gX7f3_26fSD7nz8eb2_2xAktG9FucHSSTCk1gffjvCjWJyusBbCa8UG5RVk1z-AmR5Ue5KD55JiYp0HRWVygr-fcfvrPBrWZNVQHMdoEeauGSa41o5OmXcrOUldyrQW8OZWw2vJsGDWvhM2ZsOmEzSthI7vny1u8rc5G35m5UP8Z-ThIKdXUdfysq32VDlDMU95K6p__J_wFWoWN3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1429910890</pqid></control><display><type>article</type><title>Laser-induced forward transfer of intact chalcogenide thin films: resultant morphology and thermoelectric properties</title><source>Springer Nature - Complete Springer Journals</source><creator>Feinaeugle, M. ; Sones, C. L. ; Koukharenko, E. ; Gholipour, B. ; Hewak, D. W. ; Eason, R. W.</creator><creatorcontrib>Feinaeugle, M. ; Sones, C. L. ; Koukharenko, E. ; Gholipour, B. ; Hewak, D. W. ; Eason, R. W.</creatorcontrib><description>We present a laser-based transfer method for the novel application of fabricating elements for planar thermoelectric devices. Thin films of thermoelectric chalcogenides (Bi 2 Te 3 , Bi 2 Se 3 and Bi 0.5 Sb 1.5 Te 3 ) were printed via laser-induced forward transfer (LIFT) onto polymer-coated substrates over large areas of up to ∼15 mm 2 in size. A morphological study showed that it was possible to partially preserve the polycrystalline structure of the transferred films. The films’ Seebeck coefficients after LIFT transfer were measured and resulted in −49±1 μV/K, −93±8 μV/K and 142±3 μV/K for Bi 2 Te 3 , Bi 2 Se 3 and Bi 0.5 Sb 1.5 Te 3 , respectively, which were found to be ∼23±6 % lower compared to their initial values. This demonstration shows that LIFT is suitable to transfer sensitive, functional semiconductor materials over areas up to ∼15 mm 2 with minimal damage onto a non-standard polymer-coated substrate.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-012-7491-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Chalcogenides ; Characterization and Evaluation of Materials ; Condensed Matter Physics ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Electronic conduction in metals and alloys ; Electronic transport in condensed matter ; Exact sciences and technology ; Lasers ; Lift ; Machines ; Manufacturing ; Nanotechnology ; Optical and Electronic Materials ; Physics ; Physics and Astronomy ; Preserves ; Processes ; Resultants ; Semiconductor materials ; Surfaces and Interfaces ; Thermoelectric and thermomagnetic effects ; Thermoelectricity ; Thin Films</subject><ispartof>Applied physics. A, Materials science &amp; processing, 2013-09, Vol.112 (4), p.1073-1079</ispartof><rights>Springer-Verlag Berlin Heidelberg 2012</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-9c6c08415558eff7bd51415a3aaeea91265cd5a5bbec8c059646928c13b8650b3</citedby><cites>FETCH-LOGICAL-c394t-9c6c08415558eff7bd51415a3aaeea91265cd5a5bbec8c059646928c13b8650b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-012-7491-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-012-7491-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27644458$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Feinaeugle, M.</creatorcontrib><creatorcontrib>Sones, C. L.</creatorcontrib><creatorcontrib>Koukharenko, E.</creatorcontrib><creatorcontrib>Gholipour, B.</creatorcontrib><creatorcontrib>Hewak, D. W.</creatorcontrib><creatorcontrib>Eason, R. W.</creatorcontrib><title>Laser-induced forward transfer of intact chalcogenide thin films: resultant morphology and thermoelectric properties</title><title>Applied physics. A, Materials science &amp; processing</title><addtitle>Appl. Phys. A</addtitle><description>We present a laser-based transfer method for the novel application of fabricating elements for planar thermoelectric devices. Thin films of thermoelectric chalcogenides (Bi 2 Te 3 , Bi 2 Se 3 and Bi 0.5 Sb 1.5 Te 3 ) were printed via laser-induced forward transfer (LIFT) onto polymer-coated substrates over large areas of up to ∼15 mm 2 in size. A morphological study showed that it was possible to partially preserve the polycrystalline structure of the transferred films. The films’ Seebeck coefficients after LIFT transfer were measured and resulted in −49±1 μV/K, −93±8 μV/K and 142±3 μV/K for Bi 2 Te 3 , Bi 2 Se 3 and Bi 0.5 Sb 1.5 Te 3 , respectively, which were found to be ∼23±6 % lower compared to their initial values. This demonstration shows that LIFT is suitable to transfer sensitive, functional semiconductor materials over areas up to ∼15 mm 2 with minimal damage onto a non-standard polymer-coated substrate.</description><subject>Chalcogenides</subject><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Electronic conduction in metals and alloys</subject><subject>Electronic transport in condensed matter</subject><subject>Exact sciences and technology</subject><subject>Lasers</subject><subject>Lift</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Preserves</subject><subject>Processes</subject><subject>Resultants</subject><subject>Semiconductor materials</subject><subject>Surfaces and Interfaces</subject><subject>Thermoelectric and thermomagnetic effects</subject><subject>Thermoelectricity</subject><subject>Thin Films</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kD9rHDEQxUVIIBfHH8CdmkAaJfq7u3JnjB0bDtIktdBqR3cyWukiaQn-9pY5kzLTDMO894b5IXTF6DdG6fi9UiqEJpRxMkrNiHyHdkwKTugg6Hu0o1qOZBJ6-Ig-1fpEe0nOd6jtbYVCQlo2Bwv2ufy1ZcGt2FQ9FJw9DqlZ17A72ujyAVJYALdjSNiHuNZrXKBusdnU8JrL6ZhjPjxjm3rIEcqaIYJrJTh8KvkEpQWon9EHb2OFy7d-gX7f3_26fSD7nz8eb2_2xAktG9FucHSSTCk1gffjvCjWJyusBbCa8UG5RVk1z-AmR5Ue5KD55JiYp0HRWVygr-fcfvrPBrWZNVQHMdoEeauGSa41o5OmXcrOUldyrQW8OZWw2vJsGDWvhM2ZsOmEzSthI7vny1u8rc5G35m5UP8Z-ThIKdXUdfysq32VDlDMU95K6p__J_wFWoWN3A</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Feinaeugle, M.</creator><creator>Sones, C. L.</creator><creator>Koukharenko, E.</creator><creator>Gholipour, B.</creator><creator>Hewak, D. W.</creator><creator>Eason, R. W.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130901</creationdate><title>Laser-induced forward transfer of intact chalcogenide thin films: resultant morphology and thermoelectric properties</title><author>Feinaeugle, M. ; Sones, C. L. ; Koukharenko, E. ; Gholipour, B. ; Hewak, D. W. ; Eason, R. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-9c6c08415558eff7bd51415a3aaeea91265cd5a5bbec8c059646928c13b8650b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Chalcogenides</topic><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Electronic conduction in metals and alloys</topic><topic>Electronic transport in condensed matter</topic><topic>Exact sciences and technology</topic><topic>Lasers</topic><topic>Lift</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Preserves</topic><topic>Processes</topic><topic>Resultants</topic><topic>Semiconductor materials</topic><topic>Surfaces and Interfaces</topic><topic>Thermoelectric and thermomagnetic effects</topic><topic>Thermoelectricity</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feinaeugle, M.</creatorcontrib><creatorcontrib>Sones, C. L.</creatorcontrib><creatorcontrib>Koukharenko, E.</creatorcontrib><creatorcontrib>Gholipour, B.</creatorcontrib><creatorcontrib>Hewak, D. W.</creatorcontrib><creatorcontrib>Eason, R. W.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics. A, Materials science &amp; processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feinaeugle, M.</au><au>Sones, C. L.</au><au>Koukharenko, E.</au><au>Gholipour, B.</au><au>Hewak, D. W.</au><au>Eason, R. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Laser-induced forward transfer of intact chalcogenide thin films: resultant morphology and thermoelectric properties</atitle><jtitle>Applied physics. A, Materials science &amp; processing</jtitle><stitle>Appl. Phys. A</stitle><date>2013-09-01</date><risdate>2013</risdate><volume>112</volume><issue>4</issue><spage>1073</spage><epage>1079</epage><pages>1073-1079</pages><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>We present a laser-based transfer method for the novel application of fabricating elements for planar thermoelectric devices. Thin films of thermoelectric chalcogenides (Bi 2 Te 3 , Bi 2 Se 3 and Bi 0.5 Sb 1.5 Te 3 ) were printed via laser-induced forward transfer (LIFT) onto polymer-coated substrates over large areas of up to ∼15 mm 2 in size. A morphological study showed that it was possible to partially preserve the polycrystalline structure of the transferred films. The films’ Seebeck coefficients after LIFT transfer were measured and resulted in −49±1 μV/K, −93±8 μV/K and 142±3 μV/K for Bi 2 Te 3 , Bi 2 Se 3 and Bi 0.5 Sb 1.5 Te 3 , respectively, which were found to be ∼23±6 % lower compared to their initial values. This demonstration shows that LIFT is suitable to transfer sensitive, functional semiconductor materials over areas up to ∼15 mm 2 with minimal damage onto a non-standard polymer-coated substrate.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-012-7491-4</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0947-8396
ispartof Applied physics. A, Materials science & processing, 2013-09, Vol.112 (4), p.1073-1079
issn 0947-8396
1432-0630
language eng
recordid cdi_proquest_miscellaneous_1429910890
source Springer Nature - Complete Springer Journals
subjects Chalcogenides
Characterization and Evaluation of Materials
Condensed Matter Physics
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Electronic conduction in metals and alloys
Electronic transport in condensed matter
Exact sciences and technology
Lasers
Lift
Machines
Manufacturing
Nanotechnology
Optical and Electronic Materials
Physics
Physics and Astronomy
Preserves
Processes
Resultants
Semiconductor materials
Surfaces and Interfaces
Thermoelectric and thermomagnetic effects
Thermoelectricity
Thin Films
title Laser-induced forward transfer of intact chalcogenide thin films: resultant morphology and thermoelectric properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T17%3A17%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Laser-induced%20forward%20transfer%20of%20intact%20chalcogenide%20thin%20films:%20resultant%20morphology%20and%20thermoelectric%20properties&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Feinaeugle,%20M.&rft.date=2013-09-01&rft.volume=112&rft.issue=4&rft.spage=1073&rft.epage=1079&rft.pages=1073-1079&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-012-7491-4&rft_dat=%3Cproquest_cross%3E1429910890%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1429910890&rft_id=info:pmid/&rfr_iscdi=true