Mechanical Analysis of Trapezoidal Corrugated Composite Skins

Using of the corrugated skins and morphing technology is a good idea to provide the desired performance and improve aerodynamic efficiency. Corrugated structures and skins are flexible in the direction of corrugation and stiff in the transverse direction. In this paper a simple analytical model for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied composite materials 2013-08, Vol.20 (4), p.341-353
Hauptverfasser: Ghabezi, P., Golzar, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using of the corrugated skins and morphing technology is a good idea to provide the desired performance and improve aerodynamic efficiency. Corrugated structures and skins are flexible in the direction of corrugation and stiff in the transverse direction. In this paper a simple analytical model for the effective stiffness of the trapezoidal corrugated composites is developed in symmetrical and unsymmetrical lay-up. The elongation and effective stiffness in longitudinal and transverse directions of trapezoidal corrugated skins and flat composites are extracted using strain energy and Castiglione’s theorem. Various dimensions of trapezoidal element for unidirectional and plain woven fabrics of E-glass/Epoxy are investigated. Trapezoidal corrugated composites were modelled by commercial FEM software ABAQUS and compared to analytical model. Analytical model is validated by experimental results from bending and tensile tests. Finally, load-displacement curves in the tensile and bending tests are studied and their different stages of behavior are identified. Results of FEM, experimental and analytical simulation show that how the corrugated composite skins can afford obviously larger deformation than the flat one and they are good solution to use in the morphing applications.
ISSN:0929-189X
1573-4897
DOI:10.1007/s10443-012-9267-6