A Finite Genus Solution of the Veselov's Discrete Neumann System

The Veselov's discrete Neumann system is derived through nonlinearization of a discrete spectral problem. Based on the commutative relation between the Lax matrix and the Darboux matrix with Unite genus potentials, a special solution is calculated with the help of the Baker-Akhiezer-Kriechever...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in theoretical physics 2012-10, Vol.58 (4), p.469-474
Hauptverfasser: Cao, Ce-Wen, Xu, Xiao-Xue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Veselov's discrete Neumann system is derived through nonlinearization of a discrete spectral problem. Based on the commutative relation between the Lax matrix and the Darboux matrix with Unite genus potentials, a special solution is calculated with the help of the Baker-Akhiezer-Kriechever function.
ISSN:0253-6102
DOI:10.1088/0253-6102/58/4/02