A Finite Genus Solution of the Veselov's Discrete Neumann System
The Veselov's discrete Neumann system is derived through nonlinearization of a discrete spectral problem. Based on the commutative relation between the Lax matrix and the Darboux matrix with Unite genus potentials, a special solution is calculated with the help of the Baker-Akhiezer-Kriechever...
Gespeichert in:
Veröffentlicht in: | Communications in theoretical physics 2012-10, Vol.58 (4), p.469-474 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Veselov's discrete Neumann system is derived through nonlinearization of a discrete spectral problem. Based on the commutative relation between the Lax matrix and the Darboux matrix with Unite genus potentials, a special solution is calculated with the help of the Baker-Akhiezer-Kriechever function. |
---|---|
ISSN: | 0253-6102 |
DOI: | 10.1088/0253-6102/58/4/02 |