Artificial neural network approach to study the effect of injection pressure and timing on diesel engine performance fueled with biodiesel
This study intends to predict the influence of injection pressure and injection timing on performance, emission and combustion characteristics of a diesel engine fuelled with waste cooking palm oil based biodiesel using the artificial neural network (ANN) model. To acquire data for training and test...
Gespeichert in:
Veröffentlicht in: | International journal of automotive technology 2013-08, Vol.14 (4), p.507-519 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study intends to predict the influence of injection pressure and injection timing on performance, emission and combustion characteristics of a diesel engine fuelled with waste cooking palm oil based biodiesel using the artificial neural network (ANN) model. To acquire data for training and testing in the proposed ANN, experiments were carried out in a single cylinder, four stroke direct injection diesel engine at a constant speed of 1500 rpm and at full load (100%) condition. From the experimental results, it was observed that waste cooking palm oil methyl ester provided better engine performance and improved emission and combustion characteristics at injection pressure of 280 bar and timing of 25.5° bTDC. An ANN model was developed using the data acquired from the experiments. Training of ANN was performed based on back propagation learning algorithm. Multilayer perceptron (MLP) network was used for non-linear mapping of the input and output parameters. Among the various networks tested the network with two hidden layers and 11 neurons gave better correlation coefficient for the prediction of engine performance, emission and combustion characteristics. The ANN model was validated with the test data which was not used for training and was found to be very well correlated. |
---|---|
ISSN: | 1229-9138 1976-3832 |
DOI: | 10.1007/s12239-013-0055-6 |