Accelerated and Inexact Forward-Backward Algorithms
We propose a convergence analysis of accelerated forward-backward splitting methods for composite function minimization, when the proximity operator is not available in closed form, and can only be computed up to a certain precision. We prove that the $1/k^2$ convergence rate for the function values...
Gespeichert in:
Veröffentlicht in: | SIAM journal on optimization 2013-01, Vol.23 (3), p.1607-1633 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1633 |
---|---|
container_issue | 3 |
container_start_page | 1607 |
container_title | SIAM journal on optimization |
container_volume | 23 |
creator | Villa, Silvia Salzo, Saverio Baldassarre, Luca Verri, Alessandro |
description | We propose a convergence analysis of accelerated forward-backward splitting methods for composite function minimization, when the proximity operator is not available in closed form, and can only be computed up to a certain precision. We prove that the $1/k^2$ convergence rate for the function values can be achieved if the admissible errors are of a certain type and satisfy a sufficiently fast decay condition. Our analysis is based on the machinery of estimate sequences first introduced by Nesterov for the study of accelerated gradient descent algorithms. Furthermore, we give a global complexity analysis, taking into account the cost of computing admissible approximations of the proximal point. An experimental analysis is also presented. [PUBLICATION ABSTRACT] |
doi_str_mv | 10.1137/110844805 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1429882464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3038192021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c290t-bef285c9c9fba48bc007584f93e7177f605204df94aa87676dfc7affacf1b9bb3</originalsourceid><addsrcrecordid>eNpdkDFPwzAQhS0EEqUw8A8iscAQuHOc2B5D1UKlSiwwRxfHhpQ0KXYq4N_jqoiB6d7w6d2nx9glwi1iJu8QQQmhID9iEwSdpxKVPt7nnKcFz8QpOwthDQBKF2rCstIY21lPo20S6ptk2dsvMmOyGPwn-Sa9J_O-D0nZvQ6-Hd824ZydOOqCvfi9U_aymD_PHtPV08NyVq5SwzWMaW0dV7nRRruahKoNgMyVcDqzEqV0RVQC0TgtiJQsZNE4I8k5Mg5rXdfZlF0ferd--NjZMFabNkTbjno77EKFgmuluChERK_-oeth5_toFylUHCG-itTNgTJ-CMFbV219uyH_XSFU-_mqv_myH49hYCs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1418210204</pqid></control><display><type>article</type><title>Accelerated and Inexact Forward-Backward Algorithms</title><source>SIAM Journals Online</source><creator>Villa, Silvia ; Salzo, Saverio ; Baldassarre, Luca ; Verri, Alessandro</creator><creatorcontrib>Villa, Silvia ; Salzo, Saverio ; Baldassarre, Luca ; Verri, Alessandro</creatorcontrib><description>We propose a convergence analysis of accelerated forward-backward splitting methods for composite function minimization, when the proximity operator is not available in closed form, and can only be computed up to a certain precision. We prove that the $1/k^2$ convergence rate for the function values can be achieved if the admissible errors are of a certain type and satisfy a sufficiently fast decay condition. Our analysis is based on the machinery of estimate sequences first introduced by Nesterov for the study of accelerated gradient descent algorithms. Furthermore, we give a global complexity analysis, taking into account the cost of computing admissible approximations of the proximal point. An experimental analysis is also presented. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 1052-6234</identifier><identifier>EISSN: 1095-7189</identifier><identifier>DOI: 10.1137/110844805</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Algorithms ; Approximation ; Computing costs ; Convergence ; Cost analysis ; Estimates ; Exact solutions ; Laboratories ; Machine learning ; Mathematical analysis ; Optimization</subject><ispartof>SIAM journal on optimization, 2013-01, Vol.23 (3), p.1607-1633</ispartof><rights>2013, Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c290t-bef285c9c9fba48bc007584f93e7177f605204df94aa87676dfc7affacf1b9bb3</citedby><cites>FETCH-LOGICAL-c290t-bef285c9c9fba48bc007584f93e7177f605204df94aa87676dfc7affacf1b9bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3170,27903,27904</link.rule.ids></links><search><creatorcontrib>Villa, Silvia</creatorcontrib><creatorcontrib>Salzo, Saverio</creatorcontrib><creatorcontrib>Baldassarre, Luca</creatorcontrib><creatorcontrib>Verri, Alessandro</creatorcontrib><title>Accelerated and Inexact Forward-Backward Algorithms</title><title>SIAM journal on optimization</title><description>We propose a convergence analysis of accelerated forward-backward splitting methods for composite function minimization, when the proximity operator is not available in closed form, and can only be computed up to a certain precision. We prove that the $1/k^2$ convergence rate for the function values can be achieved if the admissible errors are of a certain type and satisfy a sufficiently fast decay condition. Our analysis is based on the machinery of estimate sequences first introduced by Nesterov for the study of accelerated gradient descent algorithms. Furthermore, we give a global complexity analysis, taking into account the cost of computing admissible approximations of the proximal point. An experimental analysis is also presented. [PUBLICATION ABSTRACT]</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Computing costs</subject><subject>Convergence</subject><subject>Cost analysis</subject><subject>Estimates</subject><subject>Exact solutions</subject><subject>Laboratories</subject><subject>Machine learning</subject><subject>Mathematical analysis</subject><subject>Optimization</subject><issn>1052-6234</issn><issn>1095-7189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkDFPwzAQhS0EEqUw8A8iscAQuHOc2B5D1UKlSiwwRxfHhpQ0KXYq4N_jqoiB6d7w6d2nx9glwi1iJu8QQQmhID9iEwSdpxKVPt7nnKcFz8QpOwthDQBKF2rCstIY21lPo20S6ptk2dsvMmOyGPwn-Sa9J_O-D0nZvQ6-Hd824ZydOOqCvfi9U_aymD_PHtPV08NyVq5SwzWMaW0dV7nRRruahKoNgMyVcDqzEqV0RVQC0TgtiJQsZNE4I8k5Mg5rXdfZlF0ferd--NjZMFabNkTbjno77EKFgmuluChERK_-oeth5_toFylUHCG-itTNgTJ-CMFbV219uyH_XSFU-_mqv_myH49hYCs</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Villa, Silvia</creator><creator>Salzo, Saverio</creator><creator>Baldassarre, Luca</creator><creator>Verri, Alessandro</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130101</creationdate><title>Accelerated and Inexact Forward-Backward Algorithms</title><author>Villa, Silvia ; Salzo, Saverio ; Baldassarre, Luca ; Verri, Alessandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c290t-bef285c9c9fba48bc007584f93e7177f605204df94aa87676dfc7affacf1b9bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Computing costs</topic><topic>Convergence</topic><topic>Cost analysis</topic><topic>Estimates</topic><topic>Exact solutions</topic><topic>Laboratories</topic><topic>Machine learning</topic><topic>Mathematical analysis</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Villa, Silvia</creatorcontrib><creatorcontrib>Salzo, Saverio</creatorcontrib><creatorcontrib>Baldassarre, Luca</creatorcontrib><creatorcontrib>Verri, Alessandro</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM journal on optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Villa, Silvia</au><au>Salzo, Saverio</au><au>Baldassarre, Luca</au><au>Verri, Alessandro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerated and Inexact Forward-Backward Algorithms</atitle><jtitle>SIAM journal on optimization</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>23</volume><issue>3</issue><spage>1607</spage><epage>1633</epage><pages>1607-1633</pages><issn>1052-6234</issn><eissn>1095-7189</eissn><abstract>We propose a convergence analysis of accelerated forward-backward splitting methods for composite function minimization, when the proximity operator is not available in closed form, and can only be computed up to a certain precision. We prove that the $1/k^2$ convergence rate for the function values can be achieved if the admissible errors are of a certain type and satisfy a sufficiently fast decay condition. Our analysis is based on the machinery of estimate sequences first introduced by Nesterov for the study of accelerated gradient descent algorithms. Furthermore, we give a global complexity analysis, taking into account the cost of computing admissible approximations of the proximal point. An experimental analysis is also presented. [PUBLICATION ABSTRACT]</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/110844805</doi><tpages>27</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1052-6234 |
ispartof | SIAM journal on optimization, 2013-01, Vol.23 (3), p.1607-1633 |
issn | 1052-6234 1095-7189 |
language | eng |
recordid | cdi_proquest_miscellaneous_1429882464 |
source | SIAM Journals Online |
subjects | Algorithms Approximation Computing costs Convergence Cost analysis Estimates Exact solutions Laboratories Machine learning Mathematical analysis Optimization |
title | Accelerated and Inexact Forward-Backward Algorithms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T01%3A44%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerated%20and%20Inexact%20Forward-Backward%20Algorithms&rft.jtitle=SIAM%20journal%20on%20optimization&rft.au=Villa,%20Silvia&rft.date=2013-01-01&rft.volume=23&rft.issue=3&rft.spage=1607&rft.epage=1633&rft.pages=1607-1633&rft.issn=1052-6234&rft.eissn=1095-7189&rft_id=info:doi/10.1137/110844805&rft_dat=%3Cproquest_cross%3E3038192021%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1418210204&rft_id=info:pmid/&rfr_iscdi=true |