Accelerated and Inexact Forward-Backward Algorithms

We propose a convergence analysis of accelerated forward-backward splitting methods for composite function minimization, when the proximity operator is not available in closed form, and can only be computed up to a certain precision. We prove that the $1/k^2$ convergence rate for the function values...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on optimization 2013-01, Vol.23 (3), p.1607-1633
Hauptverfasser: Villa, Silvia, Salzo, Saverio, Baldassarre, Luca, Verri, Alessandro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a convergence analysis of accelerated forward-backward splitting methods for composite function minimization, when the proximity operator is not available in closed form, and can only be computed up to a certain precision. We prove that the $1/k^2$ convergence rate for the function values can be achieved if the admissible errors are of a certain type and satisfy a sufficiently fast decay condition. Our analysis is based on the machinery of estimate sequences first introduced by Nesterov for the study of accelerated gradient descent algorithms. Furthermore, we give a global complexity analysis, taking into account the cost of computing admissible approximations of the proximal point. An experimental analysis is also presented. [PUBLICATION ABSTRACT]
ISSN:1052-6234
1095-7189
DOI:10.1137/110844805