Accelerated and Inexact Forward-Backward Algorithms
We propose a convergence analysis of accelerated forward-backward splitting methods for composite function minimization, when the proximity operator is not available in closed form, and can only be computed up to a certain precision. We prove that the $1/k^2$ convergence rate for the function values...
Gespeichert in:
Veröffentlicht in: | SIAM journal on optimization 2013-01, Vol.23 (3), p.1607-1633 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose a convergence analysis of accelerated forward-backward splitting methods for composite function minimization, when the proximity operator is not available in closed form, and can only be computed up to a certain precision. We prove that the $1/k^2$ convergence rate for the function values can be achieved if the admissible errors are of a certain type and satisfy a sufficiently fast decay condition. Our analysis is based on the machinery of estimate sequences first introduced by Nesterov for the study of accelerated gradient descent algorithms. Furthermore, we give a global complexity analysis, taking into account the cost of computing admissible approximations of the proximal point. An experimental analysis is also presented. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 1052-6234 1095-7189 |
DOI: | 10.1137/110844805 |