Infinite-Dimensional Prolongation Structures for the RobinsonaTrautman Type III Metric
The universal covering symmetry algebra of the RobinsonaTrautman equations of Petrov Type III is shown to include the infinite-dimensional Lie algebra A2aC[I>-1, I>], the loop algebra over A2. This algebra has slower growth than the contragradient algebra K2 obtained previously for this metric...
Gespeichert in:
Veröffentlicht in: | Reports on mathematical physics 2013-06, Vol.71 (3), p.353-362 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The universal covering symmetry algebra of the RobinsonaTrautman equations of Petrov Type III is shown to include the infinite-dimensional Lie algebra A2aC[I>-1, I>], the loop algebra over A2. This algebra has slower growth than the contragradient algebra K2 obtained previously for this metric by other authors. |
---|---|
ISSN: | 0034-4877 |