Infinite-Dimensional Prolongation Structures for the RobinsonaTrautman Type III Metric

The universal covering symmetry algebra of the RobinsonaTrautman equations of Petrov Type III is shown to include the infinite-dimensional Lie algebra A2aC[I>-1, I>], the loop algebra over A2. This algebra has slower growth than the contragradient algebra K2 obtained previously for this metric...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Reports on mathematical physics 2013-06, Vol.71 (3), p.353-362
Hauptverfasser: Ifidon, E O, Oghre, E O
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The universal covering symmetry algebra of the RobinsonaTrautman equations of Petrov Type III is shown to include the infinite-dimensional Lie algebra A2aC[I>-1, I>], the loop algebra over A2. This algebra has slower growth than the contragradient algebra K2 obtained previously for this metric by other authors.
ISSN:0034-4877