A Well-Balanced Reconstruction of Wet/Dry Fronts for the Shallow Water Equations

In this paper, we construct a well-balanced, positivity preserving finite volume scheme for the shallow water equations based on a continuous, piecewise linear discretization of the bottom topography. The main new technique is a special reconstruction of the flow variables in wet–dry cells, which is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of scientific computing 2013-08, Vol.56 (2), p.267-290
Hauptverfasser: Bollermann, Andreas, Chen, Guoxian, Kurganov, Alexander, Noelle, Sebastian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we construct a well-balanced, positivity preserving finite volume scheme for the shallow water equations based on a continuous, piecewise linear discretization of the bottom topography. The main new technique is a special reconstruction of the flow variables in wet–dry cells, which is presented in this paper for the one dimensional case. We realize the new reconstruction in the framework of the second-order semi-discrete central-upwind scheme from (Kurganov and Petrova, Commun. Math. Sci. , 5(1):133–160, 2007 ). The positivity of the computed water height is ensured following (Bollermann et al., Commun. Comput. Phys. , 10:371–404, 2011 ): The outgoing fluxes are limited in case of draining cells.
ISSN:0885-7474
1573-7691
DOI:10.1007/s10915-012-9677-5